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Abstract

Pattern formation, dynamics, and compartmentalisation are fundamental to living
systems. To explore their coupling, we study a reaction-diffusion-advection system
confined to a deformable viscoplastic droplet, where active stresses arise from chem-
ical concentration gradients. Given the system’s strong nonlinearity and coupling,
isolating inherent phenomena presents significant challenges. Here, we address this
by constructing a minimal model that is capable of a broad range of dynamics: we
retain only the lowest-order gradient terms in the active stress and develop a direct
numerical simulation for the fully coupled system. Our simulations reveal a rich spec-
trum of behaviours, including droplet fragmentation, persistent network structures,
pulsation, motility, stable non-circular shapes, and fingering instabilities. Focussing
on the pulsatory motile state, we demonstrate that viscoplastic rheology stabilises the
droplet and gives rise to persistent unidirectional motion.
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Chapter 1

Introduction

Pattern formation is a universal phenomenon, largely dominated by the study of
convection. In that scenario, a temperature gradient causes a body of fluid to heat up,
expand, and flow to a colder region, where it cools down, contracts, and sinks back to
the warmer region, forming a pattern of rolls in the flow1.

Convection forms patterns strikingly similar to reaction-diffusion systems, as both of
these systems of partial differential equations (PDEs) are invariant under translation,
rotation and reflection on an infinite plane2. Other such systems include the geometric
hallucination patterns in the visual cortex, stripes and spots on animal skins, and
nematic liquid crystals2.

Further examples are to be found, some even of planetary length scales. Saturn
exhibits a clear instance of pattern formation in its persistent hexagonal flow pattern
located near its north pole3. It is considered an example of turbulent self-organisation,
but the precise mechanism for the pattern’s formation remains unknown3.

Perhaps unsurprisingly, rich pattern dynamics are also characteristic of active or bi-
ological systems. Recent developments in the field of ecology allowed ecologists to
explain regular pattern formation in real ecosystems using scale dependent feedback
between organisms and their environment4. The combination of long range negative
feedback (e.g. the depletion of a resource) and short range positive feedback (e.g.
cooperating organisms) is key to the formation of patterns in these ecosystems. These
components are to be identified with the long term inhibition and short range activa-
tion from the theory developed by Turing5. In his theory, Turing showed that diffusion
can destabilize a homogeneous steady-state. This so called Turing instability was at
the time unintuitive, as diffusion was seen to have only a stabilising effect. Wetlands,
savannas, coral reefs, mussel beds, marsh tussocks, and intertidal mudflats all clearly
display Turing patterns in one way or another4.

In network theory, too, can we speak of pattern formation. Large, random networks
that can facilitate the Turing instability were shown to have their nodes spontaneously

1



1.1. FORMATION OF PATTERNS IN NATURE 2

divide into activator-rich and activator-poor groups6. In fact, Othmer and Scriven
observed that in the early stages of morphogenesis, an embryo would be best modeled
by a multicellular network, as opposed to a continuous reaction-diffusion system7.
Such a network has since been identified in the embryo of Caenorhabditis elegans8,9.

In the realm of active and biological systems, certainly one of the most captivating
phenomena to study is that of morphogenesis and histological dynamics in general,
which serve as a motivation for the present work.

This thesis develops a framework for directly simulating mechano-chemical pattern
formation in an active viscoplastic two-dimensional droplet through four intercon-
nected parts.

Introduction to pattern formation. This part revisits foundational concepts of reaction-
diffusion systems on a static substrate, introducing analytical methods for linear
stability assessment. Moreover, we also detail the model for the chemical sector:
the Brusselator.

Continuum mechanics of active systems. Here, the framework is extended by inte-
grating mechanical stresses into the reaction-diffusion system—covering pas-
sive transport laws, active stresses, and non-Newtonian rheology.

Direct numerical simulations via Basilisk. Direct simulation of this coupled system
appear to be unexplored in the literature. We address this gap by developing a
model using the open-source PDE solver Basilisk10. Given the limited documen-
tation for Basilisk, we present the implementation details pedagogically.

Confinement to a deformable droplet. Lastly, the active viscoplastic fluid will be
confined to a two-dimensional deformable droplet having surface tension.
Emergent phenomena will be explored; in particular, pulsatory and motile
behaviour.

1.1 Formation of Patterns in Nature

In his late years, Alan Turing was formulating a novel mathematical framework for
the formation of patterns in nature11. His works at the time aimed to elucidate the
problem of phyllotaxis: the mechanism behind the arrangement of leaves on a plant11.
It is in these works that Turing formulated his theory of morphogenesis on the basis of
reaction-diffusion systems, published in 1952—two years prior to his death5,11.

Shortly after the publication of the theory of morphogenesis, the biologist Claude
Wardlaw had the following comment on it:12

It will be appreciated that a theory, based essentially on laws of physical
chemistry that must apply to every growing system, is of the kind that may
well account for the general occurrence of certain organizational features
in plants.

In this model, a system in a homogeneous state will indefinitely remain homoge-
neous (regardless of the shape of the mass). However, any instability in the dynamical
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evolution of the system will cause the most minute fluctuations from this homoge-
neous state to develop into distinct states far removed from this equilibrium state5.
Real systems are always subject to such fluctuations, and thus such departures from
homogeneity are certain to occur spontaneously (in unstable configurations).

It is then appropriate to speak of self-organisation13. Turing based his theory on this
feature, and went further to suggest the possibility that a minute examination of the
organism just at the onset of instability but no earlier, will be conclusively telling of
how it will develop in later stages of development5. The genius of his theory lies in
showing that diffusion (usually regarded as a stabilising actor) can drive the system
into a state of instability. This will be shown shortly.

Reasoning from experimental data about the shape forming of early-stage organisms
implies that any polarity due to this shape forming is due to an asymmetric distri-
bution of some scalar property, rather than, for example, to a definite orientation
of asymmetric cells14. This scalar field is the concentration of a morphogen. The
reaction-diffusion system no longer necessarily describes chemical reactions and
Brownian diffusion of a chemical, but may model reaction through consumption and
creation of molecules by cells, and diffusion by more elaborate transport behaviour
through biological tissue15.

The theory of morphogenesis remains one of the most probable for numerous nat-
ural phenomena, including vertebrate limb pattern formation15; embryonic feather
branching, for which experimental evidence identifies the molecules serving as activa-
tors and inhibitors16; skin colouration patterns17; the placement and number of teeth
in mammals17; and limb development17.

Taken independently to the rest of the model, the diffusion sector dictates that each
morphogen moves from regions of high concentration to less concentrated regions
at a rate proportional to its concentration, and to the diffusivity of its containing
substance. In an unbounded system (infinitely large), the diffusivities would be
inversely proportional to the square root of the molecular weights18.

The rate at which the chemical reactions take place is assumed to obey the law of
mass action, which states that this rate is proportional to the concentration of the
reacting substances19. Note that this law only applies to elementary reactions, and
not to composite reactions5. The former, in contrast to the latter, involves only one
reaction step.

The system’s state can be divided into a mechanical and a chemical part. The former
concerns the stress, velocity, density and elasticity of the matter, while the latter
involves the chemical composition at each point in the substance. It will be shown
that the rich behaviour of the model in development is to be attributed to the coupling
of the mechanical properties to the chemical data.

What is meant with the chemical composition at a point is the limiting value of the
chemical composition of a small region of the substance as this region is taken to be
infinitesimally small about some point. It is hereby possible to talk of morphogenetic
fields—the continuous concentrations of shape forming chemicals5. We will work
with the assumption that all of the fields are continuous.
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In his 1952 paper where the term morphogenesis is introduced, Turing opted to ignore
the interdependence of the chemical and mechanical parts, stating that this coupling
adds enormously to the difficulty5. It is fascinating that he should consider the cou-
pling of these parts important in the context of biology, given that the motor proteins
dynein and kinesin were only discovered some decades later. The computational
freedom granted by modern computers permits one to simulate a system where the
mechanical and chemical parts do influence each other. This thesis will investigate the
resulting phenomena, starting with a reaction-diffusion model on a static substrate,
as was the case in Turing’s paper5, then considering the influence of the chemical
concentration on a dynamic substrate, and vice versa once the chemicals are made to
advect with the resulting flow. Next, the chemicals will be confined to a thin droplet
having surface tension, and finally, the effects of viscoplastic rheology will be analysed.

Any model has simplifying assumptions that distance its relation to the real world,
and this one is no exception. At first one might be opposed to ignoring the internal
structure of the cells, but this proves to be of no concern. The reaction-diffusion model
has been shown to apply universally to a great many organisms, and the predictions
of this model relate to emergent observables in real life13. That is to say, the behaviour
concerned here is universal among biological organisms and independent of the
detailed structure of the system’s constituents.

1.2 Reaction-Diffusion Systems

The evolution of the morphogenetic fields is governed by reaction-diffusion equations.
For chemical reactions, the reaction equations are derived using the law of mass
action, and it is further assumed that each chemical diffuses through the medium it
resides in. But all other effects, such as advection, are considered irrelevant at this
stage. Advection effects will be introduced later so as to bridge the mechanical and
chemical sectors of this system.

The law of mass action regards the chemical reaction network19

N∑

n=1
g (n,r )Cm

k(r )↑↑↓
N∑

n=1
h(m,r )Cn , (r = 1,2, . . . ,R), (1.1)

where g (n,r ) is the stoichiometric coefficient of the chemical Cn on the left hand side
of the r th reaction, h(n,r ) is the coefficient on the right hand side, and k(r ) is the rate
at which the r th reaction occurs. The mass action law then states that this reaction
network is modeled by the N autonomous polynomial differential equations19

fn ↔ dCn

dt
=

R∑

r=1

[
h(n,r )↑ g (n,r )

]
k(r )

N∏

n=1
C g (n,r )

n , (n = 1,2, . . . , N ), (1.2)

Note that the concentration of the chemical Cn has been given the same symbol as
the representation for the chemical itself. It is granted that context will be sufficient to
differentiate the two.
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The equation of motion for the chemicals is given by the sum of the diffusive and
mutual reaction components

ωCn

ωt
= Dn↗2Cn + fn(C1, . . . ,CN ), (1.3)

where we will consider in this chapter a stationary, two-dimensional, two-way periodic
domain D =T2. Using Turing’s terminology, C1, . . .CN are the morphogenetic fields
(chemicals), D1, . . . ,DN are diffusion constants, ↗2 = ω2

x +ω2
y is the Laplace operator,

and f1, . . . , fN are non-linear local sources that describe the chemical reactions. Unless
the chemical mixture is very simple, one cannot easily make predictions about the
shape of fn , since the reaction rates k(r ) are, in general, non trivial functions of the
concentrations Cn

13,19.

Lastly, we will not consider explicit cross diffusion by means of a non-diagonal dif-
fusion matrix (e.g. the coefficient of the Laplace operator is taken to be Dn and not
an N ↘N matrix). Cross diffusion relaxes the conditions for pattern formation, and
is the norm in living systems20. But, later on, when the chemicals are allowed to be
advected by the medium they reside in and can accelerate its flow, this advection and
acceleration will serve a similar role to cross diffusion.

At the early stages of development, when the biological tissue consists of tens to
hundreds of cells, the morphogenetic fields are taken to be homogeneous. This is
reflected in the model by the enforcement of the existence of a spatially homogeneous
and stationary solution to the system of equations, also called a thermodynamic
branch. To guarantee the existence of a thermodynamic branch, a bounded system
must have the flux of the morphogenetic fields vanish at the boundaries, be fixed in
value at the boundaries, or have periodic boundaries13.

When there is only one morphogenetic field (N = 1), spatial homogeneity is never
broken by an instability, as shown in appendix A13. Furthermore, even if a system
was started in a non-homogeneous state, it will certainly decay to one eventually
since inhomogeneous stable states cannot exist given the stated boundary conditions,
regardless of the form of f1

13. This can be shown by considering the stability of the
Fourier transformed linearised system, an analysis which shows that the first spatial
mode to grow exponentially is the homogeneous zero-frequency mode. Linear stability
analysis will be handled in the following section. We will therefore consider the most
simple model, consisting of two chemicals, that can produce non-homogeneous
steady-states.

1.2.1 Linear Stability Analysis

The precise way in which a homogeneous steady-state—that is, a spatially uniform and
time-independent state—loses its stability to inhomogeneous modes is the subject
matter of linear stability analysis. Its approach is to consider a small, inhomogeneous
perturbation, and to study the evolution of this perturbation on the linearised system.
If one finds that the perturbation grows exponentially, then one claims that the system
is unstable with respect to that perturbation, and a spatial pattern is expected to
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develop. Vice versa, if the perturbation decays exponentially, then the system is said
to be stable with respect to the perturbation, and no pattern will develop. In this way,
it is possible to map out the stability of perturbations across all spatial wavelengths,
and make statements about the initial pattern development.

Consider a general second order PDE in f of the form

a11
ω2 f
ωε2 +2a12

ω

ωε

ω f
ωϑ

+a1
ω f
ωε

+a2
ω f
ωϑ

+a0 f = 0 (1.4)

where ai are coefficients. One can classify this PDE into three distinct classes: elliptic,
parabolic, and hyperbolic, as follows21.

Elliptic If a2
12 < a11a22. Then, the PDE reduces to ω2

ε f +ω2
ϑ f +. . . = 0. Here, (. . .) denotes

terms of order 1 or 0. Examples are Laplace’s equation and Poisson’s equation.
One key feature of linear elliptic PDEs is that their solutions are not smooth
where and only where the coefficients ai are not smooth. Different classes of
PDEs tend to reduce to elliptic PDEs when solving for the steady-state.

Hyperbolic If a2
12 > a11a22. The PDE reduces to ω2

ε f ↑ω2
ϑ f + . . . = 0. The solutions to

hyperbolic PDEs are wave-like; one can speak of a speed at which information
propagates. This is in stark contrast to elliptic and parabolic PDEs, for which the
solution instantly and globally responds to disturbances in the initial value or the
boundary conditions. Such hyperbolic PDEs are associated with conservation
laws.

Parabolic If a2
12 = a11a22. Then, unless a11 = a12 = a22 = 0, the PDE reduces to ω2

ε f +
. . . = 0. An example is the one-dimensional heat equation. Linear parabolic
PDEs have the property that an initial-value or a boundary-value problem has a
solution for all time.

The steady state of equation (1.3) is found by solving the elliptic equation

Dn↗2Cn + fn(C1, . . . ,CN ) = 0, (1.5)

however, we might assume that an analytical solution to the above equation is not
obtainable because of the non-linearities of fn . If a homogeneous steady state is
known, linearising equation (1.3) allows for testing the stability of this state with
respect to small perturbations. If the system is unstable to a plane wave perturbation
of non zero spatial frequency, then there is the possibility for pattern formation.

We will focus on the case of two fields. To analyze the stability of equation (1.3) with
regards to a small deviation from a homogeneous, stationary state (C 1,C 2), we will
linearise it with regards to that state by defining ϖC1 :=C1(r, t )↑C 1, ϖC2 :=C2(r, t )↑C 2,
which can be cast as

ωω

ωt
=Aω, (1.6)
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Figure 1.1: The stability of a lin-
earised reaction-diffusion system
with linear operator A for differ-
ent values of detA and trA. The
system is stable with regards to a
wave perturbation of temporal fre-
quency ϱ in the fourth quadrant.
Adapted from Cross22.

trA

detA

detA= 1
4 (trA)2

Above curve:

ϱ≃C,

ϱ1=ϱ⇐
2 .

Below curve: iϱ≃R.

Stable oscillations.

Stable.

withω := (ϖC1,ϖC2)T and

A= fi j +Di j↗2 =
(

f11 +D1↗2 f12

f21 f22 +D2↗2

)
. (1.7)

Here, Di j are the diffusion coefficients, and the matrix formed by fi j is the Jacobian of
the reaction terms fn . We assume translational symmetry, and so the solution to this
equation can be given as a superposition of harmonic modes of temporal and spatial
frequency ϱl and kl , respectively, where l is the mode number2. The dispersion law is
found upon substituting this solution in equation (1.6) and solving for ϱl as a function
of kl , and it is given by

ϱ(k2) = i
2

(
trA±

⇒
ω

)
, ω= (trA)2 ↑4detA. (1.8)

Whether iϱ is real or complex valued is decided by the sign of ω:

↑iϱ= 1
2





trA±
⇒
|ω| ≃R if ω> 0,

trA ≃R if ω= 0,

trA± i
⇒
|ω| ≃C if ω< 0.

(1.9)

The homogeneous stationary-state is stable if Re{↑iϱ} < 0 holds for both eigenvalues
for all harmonic modes l . For this to be the case, the trace of A must be negative and
its determinant must be positive.

Given a bifurcation parameter ς which changes sign as the system first becomes
unstable with respect to small inhomogeneous perturbations, one can classify the
system into one of three stability classes22:

Type-I The system first becomes unstable at a non-zero wavenumber kc > 0; patterns
develop at a characteristic scale of 2ϕ/kc . When the bifurcation parameter
is further increased, a band of wave numbers become linearly unstable and
contribute to pattern development in a non-linear fashion.
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Type-II The growth rate of the zero frequency spatially homogeneous mode is always
zero, hence the system tends to develop patterns of long wavelengths as the
bifurcation parameter tends to zero.

Type-III The growth rate is maximal at zero wavenumber for all non-zero bifurca-
tion parameters ς. If the dispersion relation is a decreasing function of the
bifurcation parameter, this implies that for any non-zero ς, a finite band of
wavenumbers will contribute non-linearly to the pattern development.

For small values of the bifurcation parameter, the pattern formation classified by these
stability classes displays universal behaviour independent of the particular model
describing the system. Features of the patterns that initially develop according to this
theory tend to persist through to the later stages of the system’s evolution. That is the
strength of this classification scheme.

Each of these stability classes is further divided into two more: a stationary subclass,
denoted by a suffix s and an oscillatory one, denoted by a suffix o. For instance, the
stationary instability of the first type is denoted type-I-s. When the system parameters
change, and the system drifts from the fourth to the third quadrant, we speak of a
stationary instability; when the system transitions from the fourth quadrant to the
first, we speak of an oscillatory instability (see figure 1.1).

The Turing instability. The reaction-diffusion systems we will consider are those
that are stable in the absence of diffusion (Di = 0). Turing predicted that diffusion can
destabilize such a system when it is in its homogeneous steady-state, giving rise to
spatial patterns of definite wavelength that grow exponentially, until non-linearities
inhibit any further growth5. That spatial wavelength is given by

λc = 2ϕ

√
2D1D2

D1 f22 +D2 f11
. (1.10)

If the system is stable in the absence of diffusion, then the following are necessary and
sufficient conditions for the diffusive instability of a homogeneous steady state (see
appendix A):22

sign f11 sign f22 =↑1,

sign f21 sign f12 =↑1,

f11 + f22 < 0,

f11 f22 ↑ f12 f21 > 0,
(1.11)

and

D1 f22 +D2 f11 > 2
√

D1D2( f11 f22 ↑ f12 f21). (1.12)

Observe that if one diffusion coefficient is a multiple of the other, then this condition
becomes true at the trivial critical diffusion coefficient Dcrit

1 = 0 (if the Jacobian of
the reaction terms is taken to be fixed). In that case, any strictly positive diffusion
coefficient will allow for the Turing instability to occur.
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Defining the two lengths l1 =
√

D1/
∣∣ f11

∣∣ and l2 =
√

D2/
∣∣ f22

∣∣, this condition can be
written as

1
2


± 1

l 2
1

⇑ 1

l 2
2


>

√
f11 f22 ↑ f12 f21

D1D2
, (1.13)

from which it is evident that one length must be sufficiently larger than the other, so as
to satisfy the above condition. This condition is considered restrictive, but is relaxed
when considering a non-stationary domain, which is in fact more representative
for a biological system23. This will be the case once the dynamics are confined to a
deformable droplet.

Since these lengths involve the diagonal elements of the reaction matrix, and the two
rates have opposite signs, one is given the name inhibitor and the other activator.
The rate of the inhibitor is negative and so it inhibits its own growth, while the rate
of the activator is positive and so it amplifies its growth. When sign f11 = sign f21,
the activator amplifies the production of both chemicals, and the inhibitor, likewise,
affects both.

1.2.2 The Brusselator System

In a paper published in 1967, Prigogine and Lefever introduce a simple scheme of
reactions that results in spontaneous spatial pattern formation in the chemical con-
centrations24,25. It has since been given the name “the Brusselator”, as reference to its
origin in Brussels. The Brusselator system is derived from the reactions

I . A
k1↑↓C1, (1.14)

II . B +C1
k2↑↓C2 +D, (1.15)

III . 2C1 +C2
k3↑↓ 3C1, (1.16)

IV. C1
k4↑↓ E . (1.17)

The total reaction is simply A+B ↓ E +D. Here, A and B are species that are taken
to be abundant and equally distributed everywhere in space, and D and E are waste
products that are assumed to be efficiently and quickly removed. One can draw an
analogy to living systems, which continuously convert reactants high in free-energy to
low-free-energy waste products, using the difference to perform work26. This scheme
serves as a minimal model for pattern forming reaction-diffusion systems. *

The dynamic equations are derived from equation (1.14) using the law of mass action
detailed in section 1.224. Defining a reference length scale L—the length of the periodic
domain, and a reference chemical concentration C0 := Ak1/k4—derived from the
steady-state, such that C1 :=C0C 1 (and similarly for C2), the dynamic equations take
the dimensionless form
* For similar schemes, refer to Prigogine and Lefever (1967).
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ωC1

ωt
=↗2C1 +Da1 ↑ (Da2 +Da4)C1 +Da3C 2

1C2,

ωC2

ωt
= D↗2C2 +Da2C1 ↑Da3C 2

1C2.
(1.18)

We have dropped the notation x for clarity. Here, D := D2/D1 is the ratio of the
diffusion coefficients, and the chemical rates take the form of the dimensionless
Damköhler numbers

Da1 := k1L2 A
D1C0

, Da2 := k2L2B
D1

, Da3 :=
k3L2C 2

0

D1
, Da4 := k4L2

D1
, (1.19)

which for notational convenience will be momentarily called a,b,c and d respectively.
These numbers are the ratios of the chemical reaction timescales to the diffusive
transport timescales.

We will henceforth refer to this system of equations as the classical Brusselator system
of equations, when distinction is necessary against modifications that we will present
in the following sections.

Only some choices for the value of these dimensionless groups will result in sponta-
neous pattern formation. We will take b as the control parameter, defining bc as the
critical value at which pattern formation occurs for the first time as it is increased. The
dimensionless bifurcation parameter this gives rise to—ς—is constructed so that it
changes sign at criticality:

ς := b ↑bc

bc
. (1.20)

Let us investigate the dispersion relation regarding this bifurcation parameter. We
assume that the linearised system A is at equilibrium, so that we may obtain the
dispersion relation by solving det(A) = 0. We substitute ς for b in A and plot the
dispersion curve (see figure 1.2)

ς(k2) = k2

bc
+ a2c

Ddbc

(
1

k2 + 1
d

)
+ d

bc
↑1. (1.21)

We see that as the bifurcation parameter passes zero, a single non-zero wavenum-
ber becomes linearly unstable. As it is increased further, a finite and increasingly
broad band of wavenumbers become unstable. But the real part of the perturbation
frequency ϱ is zero. Evidently, this system’s stability class is Type-I-s.

As for the unstable band of wavenumbers: in the limit k2 ⇓ 1, we may approximate
ς⇔ k2/bc , and we may therefore say that the modes that grow and persist to become
spatial patterns lie approximately in the range k2 ≃ (0,ςbc ].
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The dispersion curve has a single minimum at a critical wavenumber kc . It is at this
minimum that the trivial solution first becomes unstable as the system is linearly
perturbed2. Since this minimum occurs at non-zero wavenumber, the system will
develop a spatial pattern of wavelength λc = 2ϕ/kc . This wavelength is termed the
chemical wavelength.

We conclude that for an appropriate choice of a,c,d , and D, the eigenfunctions of
A have a nontrivial spatial dependence, and grow exponentially in amplitude2. By
plugging in the values of the elements of A in equation (1.10) we see that when the
reaction parameters are fixed, the feature size of the patterns depends on the diffusion
coefficients as (see figure 1.2)

λc ↖
⇒

D . (1.22)

The Brusselator system is known to develop certain spatial patterns for different values
of ς, of which hexagons, inverted hexagons, and stripes (figure 1.2)14. Not all values
for the parameters of the Brusselator allow for these patterns to be stable. Peña et al.
have mapped out the stability thresholds in the parameter space (a/

⇒
D ,ς) for the

same parameters taken here14. For the value of a/
⇒

D that we take, the authors found
that an inverted hexagon pattern is stable for 0 <ς↭ 0.1, a stripe pattern is stable for
0.05↭ς↭ 1.3, and that a hexagon pattern is stable for 1.3↭ς↭ 0.6. Note that these
stability bands overlap. We will set ς= 0.1 henceforth unless otherwise stated. For this
value, the system develops a striped pattern.
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Figure 1.2: (top left) The maximum imaginary part of ϱ for various values of ς. The real part
is not depicted as it is zero everywhere for all three bifurcation parameters. At instability,
ς = 0 and there is precisely one wavenumber for which the imaginary part of ϱ is zero. An
infinitesimal increase in ς will mean that a spatial pattern of that wavenumber can develop.
This mode will grow exponentially until the nonlinear part of the system comes to dominate
the behaviour. Any plane wave for which the real part of ϱ is greater than zero is likewise
unstable. The curve ς = 0.4 has a range of such wavenumbers, enclosed between the two
intersections with the zero line. (top right) The dispersion curve (equation (1.21)) for the
values a = 4.5,c = d = 1,D = 8. The curve has a minimum at a non-zero wavenumber k2 =
(bc ↑d)/2↑ ca2/2d 2D, hence the system will develop a spatial pattern. (bottom left) The
Brusselator reaction-diffusion system is solved for sinusoidally varying ς along x. Different
patterns emerge in the concentration of the chemicals for different values of ς; only the first
chemical is shown. The Brusselator parameters are a = 4.5, c = d = 1, and D1 = 8D2 (recall
that b is a function of ς). (bottom right) The chemical wavelength of the Brusselator increases
as the square root of the dimensionless diffusion coefficient. Plotted along each slice of D is
the critical plane wave sin(kc x).



Chapter 2

Continuum Mechanics of Active Systems

Mechanicals stresses are known to have an effect on the chemical patterns resulting
from the Turing instability; so much was predicted when the instability was discov-
ered5. Since then, at least one mechanism was discovered by which similar pattern
formation can occur via mechanical means: active stress produces a flow, which itself
acts as both the local activator and lateral inhibitor, forming stable spatial patterns
in the absence of chemical reactions27. Another study unveils pulsatory patterns in
an active-stress reaction-diffusion-advection system, patterns which are not possible
with a reaction-diffusion system on a static substrate28.

A dynamic substrate, one that flows, demonstrably alters the patterns that would
form on a static substrate. And in a biological context, it is the norm rather than the
exception that the substrate is dynamic. Consider for example protein motors such as
myosin, which give rise to gradients of activity in the cell cortex, and thus cause the
substrate in which they are embedded to flow29. This section will be spent coupling of
the reaction-diffusion equations to a dynamic substrate: a fluid.

Fluid flow is a subject with a long and rich history30. The case of conservative and
incompressible fluids was formalised by Leonhard Euler in 175731. In 1821, Claude-
Louis Navier incorporated dissipation into the model by introducing viscosity, the
internal friction of the fluid30. The mathematical description of viscosity was already
worked out by Sir Isaac Newton in his famous book Philosophiæ Naturalis Principia
Mathematica. This is an essential addition, as most phenomena observed in real fluids
occur due to viscous effects32. Such phenomena include the creation of circulation,
or of vortices, or the experimental fact that the flow speed tends to zero near walls32.
Throughout the middle of the 19th century, these equations have been refined and
improved upon by Sir George Gabriel Stokes30.

Hence, we have the well known Navier-Stokes equations, which apply to incompress-
ible Newtonian fluids, and which read

13
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Euler  
ωu

ωt
+u ·→u=↑ 1

ρ
→p +µ

ρ
↗2u

  
Navier-Stokes

, (2.1)

where u = (ux ,uy ,uz) is the fluid velocity vector, p is the fluid pressure (which is
distinct from the thermodynamic pressure33), ρ is the fluid density, and µ is the
kinematic viscosity. Here we will take the two-dimensional variant of the Navier-
Stokes equations.

These equations can be derived from a more general principle of momentum transport
through a continuum, starting from the Cauchy momentum equations. It is of interest
to show the broad lines of a derivation of the Cauchy momentum equations in order
to motivate and understand the stress tensor, as it will play a key part in subsequent
analysis. The derivation that will result in a system of equations for the flow of the
fluid rests on two basic principles: conservation of mass, and Newton’s second law.
This suffices, because we will only consider incompressible flows. *

2.1 Transport Laws of Passive Fluids

The principle of conservation of mass states that the rate of increase of mass in a
region D is balanced by the rate at which mass crosses the boundary ωD in the inward
direction

d
dt



D
ρdV =↑



ωD
ρu ·ndA. (2.2)

Using the divergence theorem, and that the region D is arbitrary, we can write the
continuity equation

ωρ

ωt
+→ ·


ρu


= 0, (2.3)

or

Dρ
Dt

+ρ→ ·u= 0. (2.4)

Newton’s second law ma=F resolves to

d
dt



Dt

ρudV =↑


ωDt

(pn↑ω ·n)dA, (2.5)

where Dt is the volume D moving with the fluid, p is the static fluid pressure, and ω
is the deviatoric stress tensor, which will henceforth be called the stress tensor. Here

* For a more complete derivation, refer to Chorin (2000).
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Figure 2.1: The forces acting on the surfaces of a rectangular fluid element of width ϖx and
height ϖy . This representation is only an approximation as the rectangle is to be infinitesimally
small. Adapted from Batchelor34.

we decompose the force into an isotropic part (the pressure) and a part that depends
on the force due to the relative motion of neighboring regions in the fluid (the stress
tensor), see figure 2.1. The sign convention picked here is motivated by the tendency
of fluids at rest to be at a state of compression34.

The pressure and stress tensors represents molecular momentum diffusion: fast mov-
ing particles transfer their momentum to neighboring particles if their momentum is
smaller or not aligned with the latter33.

Consider now a fluid particle which traces a path x(t) = (x(t), y(t)), and a general
function of position and time f (x(t ), t ). By the chain rule, we obtain an expression for
the material derivative D/Dt

d f
dt

= ω f
ωt

+u ·→ f = D f
Dt

. (2.6)

The material derivative can be thought of as a regular derivative from the point of view
of a reference frame that moves with the fluid.

The Transport Theorem states that for any function f (x, t ), we have33

d
dt



Dt

ρ f dV =


Dt

ρ
D f
Dt

dV. (2.7)

Using the Transport Theorem, Newton’s second law can be re-written



Dt

ρ
Du

Dt
dV =↑



ωDt

(pn↑ω ·n)dA, (2.8)

and using the divergence theorem, we can write the differential form of Newton’s
second law

ρ
Du

Dt
=↑→p +→ ·ω. (2.9)
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For Newtonian fluids, the stress tensor depends linearly on the velocity gradient →u;
Further making the assumption that ω is invariant under SO(n) (that is, rigid body
rotations, which ought to have no effect on diffusion of momentum), and that ω
is symmetric (as a consequence of balance of momentum), leads to ω depending
only on the symmetric part of →u, which is defined as the deformation tensor ε̇=[
→u+ (→u)T ]

/233.

Hence we can deduce that

ω=λ(→ ·u)I+2µε̇, (2.10)

where I is the identity. This defines the constants λ and µ. Rewriting so to have one
traceless term, we get

ω= 2µ

ε̇↑ 1

2
(→ ·u)I


+ζ(→ ·u)I, (2.11)

where µ and ζ=λ+µ are, respectively, the first and second coefficients of viscosity, or
the shear and bulk viscous coefficients. We identify the shear viscous coefficient with
the kinematic viscosity coefficient from before.

We will only consider incompressible fluids, such that → ·u= 0 everywhere. With this
constraint, we can compile and simplify the above equations (namely equation (2.4)
and equation (2.9)) to recover equation (2.1):

ρ
Du

Dt
=↑→p +→ ·ω,

Dρ
Dt

= 0,

→ ·u= 0,

(2.12)

with the boundary condition u= 0 everywhere on the interface containing the fluid
where that interface is not moving. This is commonly called the no-slip condition; it is
experimentally motivated by observations of dye-tainted water coming to a stop as it
approaches a wall, and it serves to close the system of equations33. The density ρ will
be taken to be constant henceforth, and as such the second member of equation (2.12)
will be omitted. However, the last member will be kept, as it is a less obvious constraint
in comparison.

Other terms can be added to equation (2.12) as necessary to model the problem at
hand. For example, one may want to consider gravity, in which case a term fg needs
to be added to the right hand side of the first member of equation (2.12). Such a term
is called a body force, as it acts on the bulk of the fluid. Likewise we will later consider
surface tension and acceleration due to chemical gradients to act on the fluid as body
forces by supplementing equation (2.12) with similar terms.

Note that for incompressible Newtonian fluids, like water, taking the divergence of
equation (2.11) results in
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→ ·ω=µ↗2u, (incompressible, Newtonian). (2.13)

The behaviour of more complex fluids such as mud, snow during an avalanche, blood,
and oil, to name a few examples, is contained in the stress tensor. These complications
will be detailed as they are introduced.

2.2 Active Stresses

An active system is one whose constituents receive energy from their surround-
ings—that which is not considered part of the system. In other words, active systems
receive a continuous influx of energy from their surroundings. Passive systems do
not; those can only dissipate energy, and will therefore eventually cease to exhibit
any dynamics and reach a stationary state. One example of a passive system is a
recently stirred cup of tea, which will eventually dissipate all kinetic energy in the
tea by molecular friction and stop whirling. An active system might consist of living
elements, consuming food to propel themselves, thereby injecting chemical energy in
the food into the system in the form of kinetic energy.

On a more general setting, the stress on an active system can respond to the composi-
tion of the fluid itself, both in the hydrostatic or deviatoric parts of the stress tensor.
In this work we focus on the assumption that such an active stress is encoded on the
hydrostatic term. Furthermore, the stress tensor can be decomposed into a passive
part, which is the only part considered so far, and an active part

ω=ωp +ωa . (2.14)

The passive part of the stress tensor ωp can be derived from a Ginzburg-Landau
free-energy functional of some order parameter φ35,36

F [φ] =


1
2

(→φ)2 +V (φ)dx, (2.15)

where V (φ) is a double-well potential function with degenerate minima at φ=±1. It is
called passive since it does not inject energy into the system; at most, it can dissipate
energy. This is the basis for the so-called Model A, which models the evolution of the
order parameter in a system without conservation laws, and Model B, which models
systems where the order parameter is conserved37.

Models like those assume the existence of a free-energy functional. But if it exists,
then the system will evolve to minimize it, and once the system reaches a minimum, it
will cease to evolve. While this formulation does result in a stress tensor that depends
on a chemical potential, we are not interested in such a system. On the contrary, our
interest lies in systems that are constantly driven out of equilibrium, and therefore
systems that cannot be represented by a free-energy functional37.
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Hence we are interested in the active partωa , which represents the system constituents
which get their energy from their surroundings in order to do work37. This continuous
injection of energy from the external environment into the system keeps it from
reaching equilibrium, allowing for the formation of spatio-temporal patterns37.

In general, the specific form of the stress tensor is obtained by coarse graining a
microscopic description of the system38. However, the approach taken here is a
phenomenological one. The form of the active stress tensor was decided by the
consideration that its divergence, representing a force, would be proportional to the
gradient of one or more of the chemicals.

We expand the force due to the active stress in the gradients of the chemical concen-
trations, successively considering terms of higher order and halting once the first term
is reached that is expected to yield interesting behaviour. Disregarding homogeneous
terms, a term of the form →C1 would be the simplest term in the gradient expansion
of a general function of the chemical concentrations. However, an acceleration term
of the form →C1 would amount to a correction to the pressure, as it can be grouped
in with the non-deviatoric part of the stress tensor. Since we assume incompressible
fluids, such a pressure term does not result in interesting dynamics.

The next simplest term would be C1→C1, but, this term can be written→C 2
1 /2, and will

therefore also be a correction to the pressure. The first term in the gradient expansion
for which this does not hold, is C1→C2. So in the spirit of choosing the simplest model
that displays novel behaviour, this term is chosen as a basis for the active stress, so
that it takes the form

→ ·ωa = fα =αC1→C2, (2.16)

where α is the activity coefficient.

Another way to circumvent this limitation is to consider boundary conditions that
explicitly involve the stresses, thus fixing the gauge. However interesting in potential
future considerations such an approach may be, it lies outside the scope of the present
model.

2.3 Beyond Newtonian Fluids

The eukaryotic cell contains a nucleus floating in a complex fluid called the cytoplasm,
consisting of smaller units (organelles) suspended in a substance consisting mostly of
water. However, the organelles and other smaller floating bits or network structures
interact in complicated ways that change the properties of the cytoplasm, so that it can
no longer be said to be simply Newtonian. The cytoplasm has in fact been argued to be
an active viscoplastic body, as opposed to a passive viscoelastic material as previously
thought39. For the minimal model constructed in this work, this complication has
the potential to produce dynamics that are otherwise inaccessible with Newtonian
rheology. Hence, this section will be spent incorporating viscoplastic rheology into
the model.
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While every bit of a typical fluid flows to fill its container, a viscoplastic fluid can
contain rigid regions that resist deformation. They behave as a solid body and so are
only able to translate and rotate as a whole. Arrested regions will behave like a liquid
again once the stress that is enacted upon them exceeds a critical threshold, named
the yield-stress. Likewise, liquid regions solidify under low stress. This phenomenon
is therefore not a phase transition, but rather mechanical in nature, and not a rare one
at that40.

Besides the hypothesis that the cell may exhibit this viscoplastic behaviour, many
active systems in nature are known to exhibit this trait. One such biological system is
mucus, which is likely key for both adhesion and locomotion for slugs and snails41.
The underside of these creatures is host to displacement waves that propagate forward,
causing the organism to move41. Force is exerted on the surface by means of adhesion
through the mucus yield stress41.

Marine organisms such as limpets must be able to resist ambient water flows, which
they do by anchoring themselves to solid objects; but they must also be capable of re-
leasing themselves at will in order to move41. They achieve this through mucus, much
like slugs and snails. Evidence suggests that limpets manipulate mucus properties
through chemical secretions, thereby actuating yield stress to control adhesion41.

Viscoplastic rheology can evidently substantially alter the dynamics of active sys-
tems, which makes it an interesting complication to consider for the minimal model
presently under construction. We will introduce viscoplastic effects by means of the
Bingham model, which is a special case of the more general Herschel-Bulkley model.
This model has a power-law dependence on shear rate in the yielded regions, allowing
for both shear-thinning and shear-thickening behavior depending on model parame-
ters41. We will implement the Herschel-Bulkley model in simulations since the added
complexity is minimal, but we will always take the special case that reduces to the
Bingham model.

The passive stress tensor in the Herschel-Bulkley model is given by





ω= 2µ0


k(
⇒

2
∣∣IIγ̇

∣∣1/2)n↑1 + τ0⇒
2
∣∣IIγ̇

∣∣1/2
µ0


ε̇ if |IIτ|1/2 ↙ τ0,

ε̇= 0 otherwise,

(2.17)

where ε̇ = [→u+ (→u)T ]/2 is the deformation tensor, ω is the deviatoric part of
the stress tensor, µ0 is the coefficient of viscosity, τ0 is the yield-stress, k is the con-
sistency index, and IIA = 

i


j Ai j A j i is the second invariant of A42. The fluid is
shear-thickening for n > 1 and shear-thinning for n < 1, but we will always take k = 1
and n = 1 so that we recover the Bingham model.

The location of solid-liquid interfaces is in general impossible to predict analytically,
so numerical simulations are used instead40,41. But for viscoplastic fluids that exhibit
complex flows or for complex geometries, typical computational methods for solving
fluid flow problems fail40. It therefore becomes necessary to develop methods specific
for viscoplastic fluids.
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Figure 2.2: (left) The shear stress of a Bingham fluid is plotted against the rate of strain for
varying values of the regularisation parameter m. A dashed line represents the un-regularised
model. (right) A similar plot is repeated with dashed curves for varying values of the Herschel-
Bulkley parameter n. A solid curve represents the value n = 1 which corresponds to the
Bingham model.

One such method is the regularisation method, which will be used throughout this
thesis. An alternative approach, the augmented Lagrangian method, rigorously en-
forces the yield-stress constraint, but is computationally expensive in comparison40.
The regularisation method circumvents numerical singularities by modifying the
constitutive equations so that they map onto standard Newtonian fluid dynamics for-
mulations, allowing the reuse of existing, efficient solvers40. This involves introducing
a regularisation parameter that smooths the discontinuous yield stress behavior; as
the parameter approaches its theoretical limit, the ideal Bingham response is asymp-
totically recovered40.

The regularised model remains well-defined even in unyielded regions (where the
deformation tensor vanishes), rendering the fluid quasi-Newtonian40. This approx-
imation eliminates rigid zones entirely, blurring the distinction between rigid and
flowing regions. Consequently, simulations may predict unphysical phenomena, such
as the inevitable onset of catastrophic flows in otherwise stable natural hazard sce-
narios40. As this limitation is of no great concern for this work, the regularisation
method’s computational efficiency and compatibility with existing solvers justify its
adoption.

This regularised model is given by the continuous equation43

ω= 2µ0


1+ τ0(1↑e↑m|IIγ̇|1/2

)
⇒

2
∣∣IIγ̇

∣∣1/2


ε̇, ∝ε̇. (2.18)

In choosing the regularisation parameter m, a few considerations must be made.
First, a large enough value is needed to recover accurate dynamics, which is evident
from the regularised stress tensor as in the limit m ↓→, the un-regularised model
is recovered. Note that this un-regularised model is singular when the deformation
tensor vanishes. The limit

∣∣IIγ̇
∣∣↓ 0 gives ω=µ0


2+

⇒
2mτ0


ε̇, showing that in order

to recover solid body dynamics in this limit, m must be taken as large as possible, as it
takes the form of a viscosity multiplier. Unfortunately, the computational complexity
increases rapidly with increasing values of m41. It is therefore necessary to perform
a convergence study so that one can choose the smallest value of m that yields an
acceptable deviation from the expected results.
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2.4 Mechano-Chemical Coupling

The active stress will cause the substrate to flow, sometimes sustaining an acceleration
in one direction for long stretches of time, yielding unrealistically large velocities. One
candidate mechanism to combat this behaviour is a simple friction term

1
λ
fλ =↑ 1

λ
u, (2.19)

whereλ is the damping time scale. This mechanism, known to be a consequence of the
force-balance condition in thin-film-like active fluids, penalises large velocities more
heavily than intermediate or weak velocities27,28. It represents drag due to motion
relative to the substrate.

A fluid under the influence of the leading order terms of an active stress tensor, as
argued above, gives the following deviatoric stress tensor:

→ ·ω=→ ·ωp ↑ 1
λ
u+αC1→C2, (2.20)

where for a Newtonian fluid we have → ·ωp = µ↗2u, and for a viscoplastic fluid we
take the Bingham model (equation (2.17)).

The dimensionless variant of equation (2.12) is obtained by defining the reference
velocity U as some average velocity, and the reference length L as the domain length

u :=Uu, x := Lx, (2.21)

giving rise to the inertial time, inertial pressure, and friction relaxation time scales

t := L
U

t , p := ρU 2p, λ := U
L
λ, (2.22)

resulting in the dimensionless incompressible momentum conservation equations
for an active fluid of Newtonian rheology

Mechanical sector





Du

Dt
=↑→p + 1

Re
→ ·ωp ↑ 1

λ
u+Ac C1→C2,

→ ·u= 0.
(2.23)

Here, Re := LUρ/µ is the Reynolds number, a ratio of the inertial timescale to the
viscous timescale. Physically, the inertial and viscous timescales are, respectively,
the typical time for a chunk of fluid to move a distance L, and the typical time for
viscosity to diffuse momentum over a distance L. We further define the activity
parameter Ac := αC 2

0 /ρU 2, a ratio of the inertial forces and the forces due to the
chemical gradients, and the Bingham number Bi := Lτ0/Uµ0, a ratio of the yield-stress
to the viscous stress.
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Since the Reynolds number is dimensionless, it is invariant under a change of unit
system. Therefore it is meaningful to talk of a large, or small Reynolds number. When
the entire system of equations is made dimensionless, it is likewise independent of
the choice of unit system. This allows one to construct model systems for physical
systems that are otherwise impractical to build.

In all simulations and most analytical calculations, we will assume the unsteady stokes
limit, in which the non-linear term representing the advection of the velocity field
u·→u is neglected. This is akin to an intermediary regime between stokes flow—where
the entire material derivative of the velocity field vanishes—and the fully inertial case
of equation (2.23). Mechanically, the unsteady stokes limit has the material derivative
of the velocity replaced with a partial derivative with respect to time. And physically, it
represents a scenario in which inertial forces are very small compared to viscous ones,
but not yet negligible.

The reaction-diffusion system now influences the fluid itself through the coupling to
the momentum conservation equations, but if the chemicals exist on the substrate,
they should be advected by it. So it is necessary to replace the partial time derivative
of equation (1.18) with the material derivative, giving

Chemical sector





DC1

Dt
= 1

Pe1
↗2C1 +Da1 ↑ (Da2 +Da4)C1 +Da3C 2

1C2,

DC2

Dt
= 1

Pe2
↗2C2 +Da2C1 ↑Da3C 2

1C2.
(2.24)

The Damköhler numbers must be re-defined to be consistent with the present refer-
ence scales

Da1 := k1L A
UC0

, Da2 := k2LB
U

, Da3 :=
k3LC 2

0

U
, Da4 := k4L

U
, (2.25)

and the diffusion coefficients have been replaced with the Péclet numbers, each a
ratio of the diffusive time scales L2/D1 and L2/D2 to the advective time scale L/U ,

Pe1 := LU
D1

, Pe2 := LU
D2

. (2.26)

In order to reduce the dimensionality of this large parameter space, we will hence-
forth fix the Reynolds number and the friction relaxation time scale to unity, and the
Damköhler numbers to Da1 = 4.5, Da2 = 7.38, Da3 = Da4 = 1. In the absence of the
mechanical sector, this corresponds to the stripe pattern of the Brusselator, where
ς= 0.1. Lastly, the Péclet numbers will always be related by Pe1 = 8Pe2, such that the
remaining free parameters of the mechano-chemical system are the Péclet number
Pe1, the activity parameter Ac, and the Bingham number Bi.
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Linear stability. Assuming Newtonian rheology and defining again Da1 = a, Da2 =
b, Da3 = c, and Da4 = d , we can write the above by defining a state vector ω :=
(C1,C2,ux ,uy ), explicitly separating the Brusselator subsystem A, the fluid flow sub-
system D, and the couplings between the two, B and C:

dω

dt
=

(
A B
C D

)
ω. (2.27)

These subsystems, when linearised about their stationary steady-state, are given by

A=


b ↑d + 1
Pe1

ωiωi
c

d 2 a2

↑b ↑ c
d 2 a2 + 1

Pe1
ωiωi


, B= 0, (2.28)

C=
(
0 Ac 1

d aωx

0 Ac 1
d aωy

)
, and D=

( 1
Reωiωi ↑ 1

λ 0
0 1

Reωiωi ↑ 1
λ

)
.

(2.29)

We see then that the advection term does not carry into the linearised Newtonian
system, by which the coupling becomes one-way. Since viscoplasticity is a non-linear
phenomenon, the conclusions carry over. In other words, the linear influence of the
mechanical sector on the chemical sector, B, is zero.

Generation and dissipation of vorticity. Defineε= (0,0,ε) =→↑u such that when
taking the curl of the system of equations, all pure gradients vanish. Taking the curl of
the momentum equations results in

ωε

ωt
+→↑ (ε↑u) = 1

Re
↗2ε↑ 1

λ
ε+Ac→↑ (C1→C2), (2.30)

or equivalently,

Dε
Dt

= 1
Re

↗2ε↑ 1
λ
ε+Ac→↑ (C1→C2). (2.31)

This shows that the activity term is the generator of vorticity. Note that if C1 can be
written f ′(C2) for some integrable function f , since → f (C2) = f ′(C2)→C2, the term
generating vorticity will vanish.

Applying the vector calculus identity →↑ (C1→C2) =C1(→↑→C2)↑→C2 ↑ (→C1)
to the activity term, and noting that the curl of a gradient is zero, we get

Dε
Dt

= 1
Re

↗2ε↑ 1
λ
ε+Ac→C2 ↑→C1 (2.32)

= 1
Re

↗2ε↑ 1
λ
ε+Ac

(
ωC1

ωx
ωC2

ωy
↑ ωC1

ωy
ωC2

ωx

)
, (2.33)
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from which it is apparent that the activity term is invariant under the simultaneous
substitution of x ∞ y and C1 ∞C2.

To summarize, the active stress was found to be an effective pressure under some cir-
cumstances, and a generator of vorticity under others, giving the conditional relation

Dε
Dt

=


1
Re↗

2ε↑ 1
λε if Newtonian and ∈ f : C1 = f ′(C2),

1
Re↗

2ε↑ 1
λε+Ac→C2 ↑→C1 if ∋ f : C1 = f ′(C2).

(2.34)

Which of the two cases is more likely depends on the dynamics of the substrate. A
static substrate will not alter the dynamics of the chemical sector, hence the chemical
concentration fields will evolve to the steady-state of the classical Brusselator system,
for which observations suggest that there exists an integrable function f which satisfies
C1 = f ′(C2). This condition may hold weakly for scenarios where flows are negligible
(in that there may exist a function for which this equality approximately holds), in
which case the active stress is expected to be in large part a pressure and in small part
a generator of vorticity.

Notice that the generator of vorticity vanishes to linear order in perturbations of the
chemical concentrations (see section 1.2.1). This means that vorticity cannot affect
the initial pattern formation in the chemical concentration fields. But it does affect the
non-linear late-stage evolution of the system. To see how, we first write the generator
of vorticity as

Ac→C2 ↑→C1 = Ac |→C1||→C2|sinθ, (2.35)

where θ is the local angle of alignment of the gradients; where sinθ = 0 for parallel
gradients, and |sinθ| = 1 for perpendicular gradients.

This formulation leads to the following observations:

1. where the gradients are perpendicular, vorticity is generated in a direction
determined by the sign of the active force;

2. where the gradients are parallel to each other, vorticity is only dissipated and
damped.

On a periodic domain, the classical Brusselator tends to a stationary steady-state
where the gradients are anti-aligned, preventing the generation of vorticity. This gives
rise to a metastable state of zero vorticity. Any deviation from this state that generates
flow that disturbs the alignment of the chemical gradients will further distance the
system from this metastable state. It is unlikely that the system will come back to that
state again, as that requires the global alignment of the gradients at a point in time
where the vorticity field is everywhere negligible. Hence, the chemical concentrations
are expected to evolve without rest.

Since the generated vorticity is stronger for a steeper gradient in the chemical concen-
tration, it is expected that a larger Péclet number will result in a stronger vorticity field.
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To see this, compare the role of the Péclet number in the chemical system to the role
of the diffusion coefficient in the classical Brusselator: the spatial wavelength of the
emerging patterns grows smaller with increasing Péclet number. Hence, the gradients
grow larger, and vorticity is generated faster, suggesting the relation

ε△ Ac Pe1. (2.36)

If the advection of the chemical fields is neglected, then it becomes possible to obtain
an explicit steady-state solution for the vorticity field in the unsteady stokes limit, e.g.,
a solution to the inhomogeneous Helmholtz equation


↗2 +κ2ε(r) = S(r), (2.37)

where S is a source term with compact support. We identify

S =↑Ac Re→C2 ↑→C1, (2.38)

κ2 =↑Re
λ

. (2.39)

In the case of homogeneous or periodic boundary conditions, the vorticity field can
be written in terms of the Green’s function G as the convolution of this function with
the source term. The Green’s function satisfies

(
↗2 ↑ Re

λ

)
G = ϖ(r↑r′), (2.40)

where ϖ is the Dirac delta function.

Furthermore, for periodic boundary conditions we already know the eigenfunctions of
the Laplacian operator: they are the harmonic modes. By the convolution theorem, the
convolution of the source term with the Green’s function is equivalent to multiplication
of the Fourier transformed functions. Further assuming isotropy, the Fourier transform
of the above entails the substitutions ↗2 ▽ k2 and ϖ▽ 1.

Let F{ f (t)} denote the Fourier transform of the function f (t), and let F↑1{·} be its
inverse. The solution is then given by

ε= Ac ReF↑1

F {→C2 ↑→C1}

Re/λ↑k2


. (2.41)

One can think of this solution as the source term with a Gaussian frequency filter
applied to it. The filter amplifies spatial frequencies in the vicinity of kϑ =

⇒
Re/λ.

Since this solution is only valid when the chemical sector is not influenced by the
mechanical, it is not expected to be observed in simulations. Nonetheless, one can
intuit that at each moment, the mechanical sector acts so as to bring itself closer



2.4. MECHANO-CHEMICAL COUPLING 26

to this solution. The ensuing effect on the chemical sector, however, immediately
alters the source term, thereby shifting the goal. To summarise, we may say that the
mechanical sector has a natural wavenumber—kϑ.

Solution for a static substrate. Let’s consider another simplified case, where we
again take the unsteady stokes limit. Let us further assume a static substrate or
negligible flow. In this case, a viscoplastic fluid of any non-negligible yield-stress will
be arrested over the entire domain, so we will also consider Newtonian rheology for
the present moment. This is in fact the more general approach, as the viscoplastic
passive stress tensor vanishes under these conditions.

As a consequence of the negligible flow, the chemicals will not be affected by the
momentum equation, and the solution to the chemical sector will remain unchanged
(e.g. it is still the solution to the Brusselator system). Therefore we may assume that
there exists an integrable function f which satisfies C1 = f ′(C2). In this case, the
activity term can be written as a pure gradient, and the active stress can be absorbed
into the pressure. We can also neglect friction, as the velocity is assumed negligible,
giving

ωu

ωt
=↑→

(
p ↑ Ac

2
C 2

1

)
+ 1

Re
↗2u, (2.42)

→ ·u= 0. (2.43)

Note that even if the velocity is negligible, variations in the velocity can be quite high,
so related terms must be carried along.

Taking the curl of the momentum equation above, and using the fact that the curl of
the Laplacian is zero and likewise for the curl of the gradient, we infer that ωt→↑u= 0.
We take the initial velocity to be zero, and thus can deduce that the flow will remain
irrotational forever.

We can use the incompressibility condition to solve for the pressure by taking the
divergence of the momentum equation, and enforcing that the velocity is constant in
time (assuming such a solution exists). This yields the Poisson equation

↗2
(

p ↑ Ac
2

C 2
1

)
= 0. (2.44)

The strong maximum principle states that unless the parenthesised part above is
constant, its maximum must lie on the boundary ωD and cannot lie on the bulk D.
But D is topologically equivalent to a torus, which has no boundaries. Therefore, the
solution to the Poisson equation is requires the term in the brackets to be constant.
But we are only interested in gradients of the pressure, so we may pick the constant to
be zero.

Plugging this pressure back into the momentum equation results in
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ωu

ωt
= 1

Re
↗2u, (2.45)

and the steady-state solution is obtained by solving the Poisson equation ↗2u= 0. But
by the strong maximum principle, the only solution is a constant velocity field. This
gives us the solution to the pressure and velocity fields in the case of a static substrate

p = Ac
2

C 2
1 ,

u= const.,
(static substrate). (2.46)

which will be compared to a numerical solution at a later point.

Dynamics on a fluid substrate. Allowing the morphogens to be advected by the
flow field that their gradients generates, we arrive in a situation in which the reaction-
diffusion subsystem is definitely affected by the momentum equation. We therefore
no longer know the relation between C1 and C2 at steady-state, if such a steady-state
even exists. The only modification to the reaction-diffusion subsystem is that the
chemicals are now advected with the flow. But if the velocity is zero, then the above
solution would apply here too. The question is then whether this solution is stable in
the presence of a small perturbation in the velocity, or whether the reaction-diffusion
subsystem will converge to its usual solution before a velocity field develops, thus
preventing acceleration and therefore deviation from this state.

Consider a phase space diagram of Pe1 against Ac. For very large Ac, we expect the
velocity to build up very slowly, since the acceleration due to the active stress is small,
and vice versa. Now recall that the critical wavenumber of the classical Brusselator is
given by equation (1.10). Since Pe2 = Pe1/8, we can infer that k2

c ↖ Pe1, and that for
large Pe1, the patterns that form are of fine features. And since the activity term is
proportional to →C2, we expect it to vanish in the limit Pe1 ↓ 0.

For viscoplastic rheology, it is to be expected that as the magnitude of the coefficient
of the activity term |Ac| is increased, more deformation will occur, and as such the
mean of the deformation tensor magnitude ̸

∣∣IIγ̇
∣∣〉 will increase. It is also expected

that as the Bingham number Bi is increased, a stronger force will be needed to deform
the fluid substantially.

The equations of the mechanical sector suggest that the evolution of a uniform velocity
field would be governed by the active stress term. Assuming that the velocity field
is zero everywhere initially, the chemical sector is expected to evolve (by a good
approximation) as if on a static substrate. But eventually, the active stress would
have contributed substantially to the velocity field, and the substrate will yield. One
therefore expects a scaling relation akin to

|IIτ|△ Bi
∣∣IIγ̇

∣∣1/2 △ |Ac|C1→C2, (2.47)
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and that therefore

∣∣IIγ̇
∣∣1/2 △ |Ac|

Bi
. (2.48)



Chapter 3

Direct Numerical Simulations

All of the numerical experiments will be performed using the partial differential
equation solver Basilisk10, the successor of Gerris. Basilisk implements the language
“Basilisk C”, which extends the C programming language (Basilisk C transpiles to C99);
it is tailored for writing discretisation schemes on Cartesian grids. A brief introduction
to the Basilisk C language is provided in appendix F.

The simulation output will be processed in the programming language Julia44, since
it offers a mature read-eval-print loop (REPL), which allows for rapid development,
and since it provides macros, which enables the creation of a more succinct domain
specific language (DSL) for inter-operation with Basilisk.

3.1 Validation

Simulation results from Basilisk are exported to disk as binary files encoding fields
such as velocity and chemical concentration. Before running any experiment, it is
necessary to verify that this saving and loading of data occurs according to expectation.

To that end, we arbitrarily define a bump function and calculate its gradient using
Basilisk, once using cell-centered vector fields, and once using face-centered vector
fields. We use a second order finite difference scheme, and compare the results with
a calculation done purely in Julia, and with the value of the derivative sampled from
the analytical solution on the same grid. The results are found to be equivalent up to
machine precision (see appendix E), so we may progress to verify a classic test case.

Poiseuille flow. Here we will simulate flow in a long channel. The full problem was
studied by Hagen in 1839 and Poiseuille in 1840, and as such it is called the Poiseuille
flow problem34. In two-dimensions, it reduces to flow in a channel—the cross-section
of a tube. We will consider an incompressible Newtonian fluid, governed by the
equations

29
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Du

Dt
=↑→p + 1

Re
↗2u, (3.1)

→ ·u= 0, (3.2)

where Re := ρU H/µ is the Reynolds number, U is a reference viscosity, and H is the
channel half-height.

We enforce a linear pressure gradient between the ends of the channel to stimulate
flow

dp
dx

=↑ωP
L

. (3.3)

Since the pressure gradient is along the x direction, we suppose that the flow is directed
purely along the length of the pipe (u = (ux ,0)). The incompressibility condition
coupled with the no-slip boundary conditions then implies that ux(x, y) = ux(y). The
momentum equation then reduces to

1
Re

u′′
x = p ′ =↑ωP

L
, (3.4)

with as solution

ux(y) =↑
(

ReωP
2L

y +C1

)
y +C2. (3.5)

Now in the possession of an analytical solution to the flow profile, we implement a
simulation for this problem and compare the analytical solution to the numerical. We
base this simulation on the navier-stokes/centered solver.

#include "navier-stokes/centered.h"

This solver approximates the incompressible, variable-density Navier-Stokes equa-
tions

ρ
Du

Dt
=↑→p +µ↗2u+a, (3.6)

→ ·u= 0, (3.7)

where µ is the kinematic viscosity, ρ is the variable density, and a is an acceleration
term. The approximation is second-order accurate.

Since we solve the dimensionless equations, we need to instruct Basilisk that the
domain size L0 and time step DT are unitless. * This we do by assigning them the
dimensional index 0. We additionally center the y coordinate.

* Core variables such as these are better set with compiler arguments, which we denote by a prefix M.
This avoids side effects due in the parsing of the Basilisk C code, because compiler arguments bypass
this step altogether.
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int main(int argc, char * argv[]) {
L0 = ML [0]; // unit [x^0] = [1] = [unitless]
origin(0, -L0/2.0);

init_grid(1 << 7); // 2^7

DT = 1e-1 [0];

We then initialise the viscosity variable mu, and call run(). This will kick off the
simulation when the program is executed.

mu = new face vector;
mu[] = {1.0/Re, 1.0/Re}; // load Re from argv

run();
}

We declare the boundary conditions and initial values in an init event, which should
be called once before the first iteration. The geometry is a long channel of height 2,
so we declare a mask * which sets to the region y <↑1 the value bottom, and to the
region y > 1 the value top. In this way we have defined the location of the top and
bottom boundaries.

event init(i = 0) {
mask(y < -1.0 ? bottom : (y > 1.0 ? top : none));

We now declare Neumann boundary conditions for the x component of the velocity
field on both ends of the channel: ωnu|x=0 = ωnu|x=L = 0 with u = (u, v). Basilisk
C defines a shorthand for the normal component of a vector: instead of specifying
u.x[left] and u.x[right], we can write u.n[left] and u.n[right], and the cor-
rect component of u will be selected based on the specified boundary.

u.n[left] = neumann(0);
u.n[right] = neumann(0);

We also set Dirichlet boundary conditions on the velocity field at the top and bottom
of the channel: a|y=±1 = 0 where a ≃ {u, v}, using the shorthand for the tangential
component u.t. And lastly, we set Dirichlet boundary conditions on the pressure field
at the right side of the channel, p|y=1 = 0, and at the left, p|y=↑1 =ωp = 1.

u.n[top] = dirichlet(0);
u.t[top] = dirichlet(0);
u.n[bottom] = dirichlet(0);
u.t[bottom] = dirichlet(0);

p[left] = dirichlet(MDeltaP);
p[right] = dirichlet(0);

}

* The implementation of the function mask is known to be error prone for anything but very simple
geometries, and as such should be avoided when possible. Specifically, mask should only be used for
boundaries that are aligned with the cells. One should otherwise use the embed header instead.
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Figure 3.1: (a) The velocity field, depicted as a heatmap representing the magnitude of the
field, overlayed with a streamplot, and a cross section of the field. The cross section consists
of the (subsampled) numerical data as a scatter plot, and the analytical prediction as a solid
graph. (b) The pressure field. The numerical value of both fields converges to the analytical
prediction.
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Figure 3.2: The mean square error of the numerical solution with respect to the analytical
decreases as the grid resolution is increased (left), and is relatively constant with decreasing
timestep size (right).

When the simulation is finished, we should like to save the value of the velocity and
pressure fields. But only the region occupied by the channel is of interest, so we define
the corresponding rectangular bounding box.

event final(t = end) {
// -----------(X2, Y2)
// channel
// (X1, Y1)-----------
coord bounding_box[2] = {{0, -1.0}, {L0, 1.0}};
output_matrix(p, box=bounding_box, file="p") // likewise for u.x and u.y

}

This test case can be extended to verify that a body force such as the activity term fα
drives the flow as expected. For the present case we will assume that the activity term
amounts to a correction to the pressure. It stands to reason that if we set the pressure
to zero and require that C 2

1 =↑xωp/L, we should recover a pressure field identical to
that of the previous simulation.

The only changes to be made are: redeclaring the acceleration term as variable in the
centered solver so we may assign it a value, setting Neumann a boundary condition
on the left opening of the channel, and constructing the field φ↔↑xωp/L.

int main(int argc, char * argv[]) {
...
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a = new face vector; // must be called after init_grid()
...

}

event init(i = 0) {
...

p[left] = neumann(0);

foreach() {
phi[] = MDeltaP * x / L0;

}
phi[left] = dirichlet(0);
phi[right] = dirichlet(MDeltaP);

}

Finally we hook into the acceleration event defined in the centered solver to set the
value of the acceleration field. * Since it is a face vector field, we iterate over the stencil
using foreach_face. And since we only wish to set the x component, we iterate using
foreach_face(x). We can use the predefined gradient function for foreach_face
loops, face_gradient_x. Refer to appendix F for more details.

event acceleration(i++) {
foreach_face(x) {

a.x[] += face_gradient_x(phi, 0);
}

}

Indeed, the results are identical to the pressure driven case. We have arbitrarily decided
to terminate the simulation once the velocity field changed less than a multiple of
1↘10↑5 of its value at the previous iteration, at which the pressure field was a perfect
gradient up to deviations from an ideal gradient of the order of 1↘10↑7.

Poiseuille flow of a viscoplastic fluid. In order to validate the viscoplastic rheology
implementation, we compare an analytical solution to the Poiseuille flow problem
with a numerical solution for the limiting case of a Bingham fluid, that is, we take
n ↓ 1 in the Herschel-Bulkley model.

We implement this model in Basilisk by extending the two-phase solver to reflect the
deviatoric stress tensor of a Herschel-Bulkley fluid. First, we declare and initialise the
variables and fields.

#include "vof.h"

scalar f[], * interfaces = {f};

double rho1 = 1.0, rho2 = 1.0;
double mu1 = 0.0, mu2 = 0.0;
double tauy = 0.0;
double n = 1;

* We add to the acceleration field as opposed to just setting its value, so to avoid interfering with other
solvers. This is a good practice, but not strictly necessary here.
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double vp_regularization = 1e-3;

event defaults(i = 0) {
alpha = new face vector; // (variable) specific volume alpha=1/rho
rho = new scalar; // cell-centered density

if (mu1 || mu2) {
mu = new face vector; // face-centered viscosity field

}
}

Then, we define a macro to interpolate the value of fluid properties across the inter-
faces using a simple arithmetic average. We smear the sharp interface by defining a
smeared fraction field sf, which is the vertex averaged fraction f. We will say more on
the subject of interfaces shortly, but for now it suffices to think of these as the layer
separating two fluids, like olive and water, for example.

// The density and viscosity are defined using arithmetic averages by
// default. The user can overload these definitions to use other types of
// averages (i.e. harmonic).
#define fraction_interp(f, a, b) (clamp(f, 0., 1.) * (a - b) + b)

scalar sf[]; // we "smear" the density/viscosity jump

event tracer_advection(i++) {
foreach() { // we initialise sf with the vertex-average of f

sf[] = (4.0 * f[] +
2.0 * (f[0,1] + f[0,-1] + f[1,0] + f[-1,0]) +
f[-1,-1] + f[1,-1] + f[1,1] + f[-1,1]) / 16.0;

}
}

We now define three variations of the second order accurate derivative of a field a with
respect to the coordinate y , each of which can be evaluated at an arbitrary offset from
a given cell:

face_gradient_displaced_y the value of which is defined at cell centers;

center_gradient_displaced_y defined at cell faces; and

face_gradient_trans_y defined at cell centers, and averaged across two consecu-
tive cells.

// face_gradient_x(a, i), predefined
// 2nd order accurate derivative of a wrt x
// offset on x by i faces
// when i=0, value is defined at cell center

// 2nd order accurate derivative of a wrt y
// offset on y by i faces and on x by j faces
// when i=j=0, value is defined at cell center
#define face_gradient_displaced_y(a,i,j) ((a[j,i] - a[j,i-1]) / Delta)

// 2nd order accurate derivative of a wrt y
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// offset on y by i faces and on x by j faces
// when i=j=0, value is defined at cell face
#define center_gradient_displaced_y(a,i,j) \

((face_gradient_displaced_y(a,i,j) + \
face_gradient_displaced_y(a,i+1,j)) / 2.)

// 2nd order accurate derivative of a wrt y (averaged)
// offset on y by i faces
// when i=0, value is defined at cell center
#define face_gradient_trans_y(a,i) \

((center_gradient_displaced_y(a, i, 0) + \
center_gradient_displaced_y(a, i, -1)) / 2.)

These definitions allow us to write the deformation tensor

ε̇=




du
dx

1
2

(
dv
dx + du

dy

)

1
2

(
dv
dx + du

dy

)
dv
dy


 (3.8)

directly in terms of its constituent primitives. The deviatoric stress tensor is then given
by equation (2.18), and calculated in an event named properties. After calculating
the new values of the various fields, it is necessary to re-apply the boundary conditions,
which we do with a call to the boundary function.

face vector D_second_inv[]; // second invariant of deformation tensor

event properties(i++) {
if (mu1 || mu2) {

foreach_face() {
// u_vector = (u.x, u.y) = (u, v)
double dudx = face_gradient_x(u.x, 0);
double dvdx = face_gradient_x(u.y, 0);
double dudy = face_gradient_trans_y(u.x, 0);
double dvdy = face_gradient_trans_y(u.y, 0);

double D11 = dudx;
double D22 = dvdy;
double D12 = (dvdx + dudy) / 2.0;

D_second_inv.x[] = sqrt(sq(D11) + sq(D22) + 2.0 * sq(D12));
}

(const) face vector mu_hb = unityf;
if (n != 1) {

mu_hb = new face vector;
foreach_face() {

mu_hb.x[] = pow(sqrt(2.) * D_second_inv.x[], n - 1);
}

}

foreach_face() {
double m = 1.0 / vp_regularization;
double Dsi = D_second_inv.x[];
double apparent_visc =
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(mu1 * mu_hb.x[]
+ tauy / (sqrt(2) * Dsi + 1e-10) * (1.0 - exp(-m * Dsi)));

double ff = face_value(sf, 0);
mu.x[] = fm.x[] * fraction_interp(ff, apparent_visc, mu2);

}
}

foreach_face() {
double ff = face_value(sf, 0);
alpha.x[] = fm.x[] / fraction_interp(ff, rho1, rho2);

}

foreach() {
rho[] = cm[] * fraction_interp(sf[], rho1, rho2);

}

boundary((scalar *){mu, D_second_inv.x, D_second_inv.y, alpha, rho});
}

For one-dimensional flow this model simplifies to

τx y =


1+

(
1↑e↑m|u′

x |
)

Bi
∣∣u′

x
∣∣


u′

x . (3.9)

Since the problem is symmetric across the length of the channel, it suffices to find
a solution for half of the height of the channel. We continue with the half for which∣∣u′

x

∣∣ = u′
x , and we work in vertically centered coordinates aligned to the left of the

channel.

Like in the Newtonian Poiseuille flow problem, in terms of the dynamic pressure
p/U 2ρ, the momentum equation reduces to

2
Re

d
dy

[
µ(u′

x)u′
x
]
= p ′ =↑ωP

L
, (3.10)

or since in this case µ(u′
x) = 1+Bi/u′

x ,

u′′
x =↑ReωP

2L
. (3.11)

In the yielded region, the solution to the above is

ux(y) =↑ReωP
2L

(y +C1)y +C2. (3.12)

The boundary conditions impose that ux(yp ) = up and ux(1) = 0. But the solution
must be continuous and smooth across the plug-yield interface, therefore u′

x(yp ) = 0
and
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Figure 3.3: Continuation of figure 3.1 for the viscoplastic case. (a) The velocity field, overlayed
with a dashed region representing the plug (effectively arrested domain). (b) The pressure
field.

ux(y) =

↑ReωP

2L (y ↑1)(y ↑2yp +1) if y > yp ,

ux(yp ) otherwise.
(3.13)

Equating the forces acting on a test area centered in the channel, of height 2yp and
length dx, gives

2yp dx
ωP
L

= 2dx
τx y (yp )

Re
, (3.14)

which in combination with τx y (yp ) = u′
x(yp )+Bi = Bi gives

yp = L
ωP

Bi
Re

. (3.15)

We include the new solver and initialise it with a yield stress and a regularisation
parameter. The simulation is otherwise identical to the Newtonian case.

// remove: #include "two-phase.h"
#include "two-phase-hb.h"

int main(int argc, char * argv[]) {
vp_regularization = 1e-3; // a reasonable default
tauy = Bi; // load Bi from argv
...

}

scalar vector_to_scalar(vector a) {
return * ((scalar *) ((vector *) {a}));

}

event final(t = end) {
...

scalar Dnorm = vector_to_scalar(D_second_inv);
save_field(Dnorm);

}
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Figure 3.4: The mean square error (MSE) of the numerical solution with respect to the analytical
decreases as the grid resolution is increased (first from left); decreases with decreasing timestep
up to a small enough value, after which the MSE increases again (second from left); and the
MSE decreases with increasing regularisation parameter m (third from left).

Besides picking an appropriate grid resolution or time step—that is, just small enough
for the required accuracy, but no smaller—a proper value must be picked for the
regularisation parameter m. A parameter sweep reveals that a value of 1↘10↑3 suffices
for this problem (figure 3.4). But this will differ as the problem statement is altered,
for example by changing the geometry, boundary conditions, or driving forces. It is
therefore necessary to repeat this measurement for each problem statement. But to
avoid cluttering the narrative, the choices made for these values will be tabulated in
appendix C.

3.2 Numerical Integration of the Chemical Sector

The Poiseuille flow problem served as a test for the numerical integration program,
since it was possible to find an analytical solution to compare the results to. The same
program can be modified to integrate the Brusselator system.

We will integrate the dimensionless Brusselator system on a two-way periodic domain
D = T2 of size L ↘L (see equation (1.18)). The independent parameters of this sys-
tem are the diffusion coefficient ratio D = D2/D1, and the four Damköhler numbers
Da1,2,3,4. Analogously to the mechano-chemical system, we set Da1 = 4.5, D1 = 1,
D = 8, and the third and fourth Damköhler numbers will be taken to be unity. The only
remaining free parameter of the reaction-diffusion system is the bifurcation parameter

ς=
Da2 ↑Da(crit)

2

Da(crit)
2

. (3.16)

For this simulation, we will make use of the diffusion solver, which solves the
reaction-diffusion equation

θ
ω f
ωt

=→ ·

Db→ f


+β f + r, (3.17)

where β f +r is a reactive term, Db is the diffusion coefficient, and θ can be interpreted
as a density term. For the present case, we identify θ = 1, and two instances of the
above equation:
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ωC1

ωt
=→ · (→C1)+

β  
(C1C2 ↑Da2 ↑1)

f
C1 +

r
4.5 , (3.18)

ωC2

ωt
=→ · (D→C2)↑C 2

1
β

C2
f

+Da2C1  
r

. (3.19)

Unlike the centered solver, the diffusion solver does not imply the inclusion of the
run header, so we include the latter explicitly.

#include "diffusion.h"
#include "run.h"

We declare the concentration fields of the two chemicals, the Brusselator parameter
Da2, and the diffusion coefficient ratio D .

scalar C1[], C2[];

double Da2 = 6.0;
double D = 8.0;

The main function is written much like before, so we skip ahead to the init event,
where we declare two-way periodic boundary conditions, set the initial value of the
concentration fields to their homogeneous steady-state with a small amplitude noise
perturbation, and initialise the random number generator with an unknown seed.

event init(i = 0) {
periodic(left); periodic(top);

srand(time(NULL));

foreach() {
C1[] = Da1 / Da4;
C2[] = (Da2 / Da1) * (Da4 / Da3) + 0.01 * noise();

}
}

To use the diffusion header, we call the diffusion function at every iteration. We
do need to take care to set the timestep using the same scheme that the momentum
equation solver uses, for consistency.

event integration(i++) {
dt = dtnext(DT);

scalar r[], beta[];
foreach() {

r[] = Da1;
beta[] = Da3 * C1[]*C2[] - Da2 - Da4;

}
diffusion(C1, dt, r=r, beta=beta);

foreach() {
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Figure 3.5: The concentration of C1 at the final timestep (left), and the value of the former along
the right edge as a function of time (right). The chemicals evolve according to the classical
Brusselator equations, with no coupling to a momentum equation. For simulation parameters
refer to row 2 of appendix C.

r[] = Da2 * C1[];
beta[] = - Da3 * sq(C1[]);

}
const face vector d[] = {D, D};
diffusion(C2, dt, d, r=r, beta=beta);

}

We then save the chemical concentration fields at the end of the simulation. The
results are presented in appendix E. Only C1 is depicted since it has been observed
that C2 roughly is equal to C1 up to normalisation, by which it is meant that C2 ⇔
aC1 +b with arbitrary constants a and b, or alternatively, C̃2 ⇔ C̃1. It is observed that∣∣C̃1 ↑ (1↑ C̃2)

∣∣⇔ 0.1, from which we infer that C1 equals C2 up to normalisation with
an error of 10% (figure E.3).

Two programs have been created so far: one that can solve the momentum conser-
vation equations for an incompressible Newtonian fluid, and one that can integrate
the Brusselator system on a static substrate. The following section will detail the for-
mation of a program that solves the reaction-diffusion system on a flowing substrate,
making this a reaction-diffusion-advection system. To complete the coupling between
the mechanical and chemical sectors, we will let chemical concentration gradients
generate flow via an active stress.

3.3 Coupling the Mechanical and Chemical Sectors

It is useful to first analyse the effects of the active stress in the absence of advection, to
gain a clearer picture. We will therefore continue with the program that integrates the
Brusselator on a static substrate. A spatio-temporal plot of C1 shows that this program
eventually converges to a quasi-stationary state (figure 3.5). But this will no longer
be the case once the chemicals are allowed to advect and the flow is accelerated by
gradients in the chemical concentrations.

Since the substrate is static, we may let the chemical sector evolve while neglecting the
activity term, greatly reducing the simulation runtime. Once the reaction-diffusion
subsystem reaches a quasi-stationary state, the activity term is considered and the
entire system is allowed to evolve until it reaches a stationary state.
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Figure 3.6: (top) A normalized slice of the
pressure field plotted against a normalized
slice of the first chemical’s concentration
squared shows that p is approximately pro-
portional to C 2

1 . (bottom) A similar plot but
for C̃1 and C̃2. Numerical integration where
C2 is forced to be proportional to C1 up to
a constant results in exact proportionality
between p and C 2
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Taking the program of section 3.2 as a basis, we include the centered solver and hook
into its acceleration event to implement the activity term fα.

#include "navier-stokes/centered.h"

double t0 = 3000.0 [0]; // once t > t0, we allow the fluid to be accelerated

double alph = 1.0; // coefficient of the activity term
// the above is not called alpha to avoid collision with an existing variable

... // define reaction rates k1, k2, k3, k4; diffusion coefficients D1, D2

event acceleration(i++) {
if (t > t0) {

foreach_face() {
a.x[] += alph * face_value(C1, 0) * face_gradient_x(C2, 0);

}
}

}

It is critical to account for the differing stencil representations of the different fields.
The concentration fields are defined on grid centers but the acceleration field is
defined on grid faces; one could calculate the relation between the two, but there
exists utility functions to handle this already. We use face_value to access a variable
defined on grid centers inside a foreach_face loop, and likewise face_gradient_x
for the second order accurate derivative with respect to x. *

There is one subtlety to note, namely that we let the chemical sector evolve to a quasi-
stationary state before introducing the activity term in the simulation. While it appears
that there exists a function f such that C1 = f ′(C2) at steady-state, and that therefore
the vorticity generator vanishes, this is not the case at early times. The numerical
solution to the velocity and pressure fields is therefore an approximation unless the
system has reached a stationary steady-state. When the relation between C1 and C2 is
artificially enforced, the results are found to be similar to the case presented here and
show that p̃ = C̃ 2

1 exactly (see figure 3.6). Such an approximate solution is furthermore
useful as it helps build intuition about the system.

* Functions ending with the suffix x result in the generation of corresponding code for the other
dimensions (in this case, y).
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Figure 3.7: The concentration of C1 at the final timestep (right), and the value of the former
along the dashed line as a function of time (left). The chemicals evolve according to the
classical Brusselator equations, with two-way coupling to the momentum equation. After a
transient period of about twenty time units, a spatial pattern spontaniously develops in C1.
For simulation parameters refer to row 4 of appendix C.

Advection of the chemicals. Extending the existing program, we introduce the
tracer solver which integrates the advection equation

ωCn

ωt
+u ·→Cn = 0, (3.20)

where Cn is a tracer: a field that is advected by the velocity field u. This solver exposes
the list tracers, which we set to include the two morphogens C1 and C2.

#include "tracer.h"

scalar * tracers = {C1, C2}; // advect C1 and C2

The rest of the code is largely unchanged, with the exception of two points. First, the
tracer header provides the tracer_diffusion event, which we must use instead
of our arbitrarily named integration event in order to solve the diffusion equation.
And second, since we are considering unsteady Stokes flow, we must set the stokes
variable to true.

But this prevents the centered solver from reducing the time-step when the velocity
field grows, requiring the manual invocation of the suppressed function. The latter
ensures the Courant–Friedrichs–Lewy (CFL) condition, which is necessary for the
solutions of a difference equation to converge to those of the hyperbolic PDE45. The
condition states that the time step should be proportional to the space step, where the
proportionality constant depends on the velocity magnitude45. The CFL condition
is defined for hyperbolic PDEs, but the unsteady stokes limit makes the momentum
equation a parabolic PDE, bringing the usage of the CFL condition into question.
Nevertheless, we found that enforcing this condition stabilises the simulation.

event stability(i++, last) {
dt = dtnext(timestep(uf, dtmax));

}

Running the simulation reveals a significant flow that develops due to the active stress,
advecting the chemicals (figure 3.7). The fluid is out of equilibrium at all times, with
the spatial pattern in the chemical concentration perpetually swishing about. Because
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Figure 3.8: A histogram of the logarithm
of the spatially averaged kinetic energy is
shown for two cases: (blue, left) a friction
term inhibits the accumulation of a net ve-
locity, and (black, right) no such friction
term is implemented, hence large mean
velocities are observed. For simulation pa-
rameters refer to row 5 of appendix C. °4 °3 °2
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Figure 3.9: The mean velocity field ̸u↑̸u〉x〉t is averaged over a duration of 100 time units
and mapped for varying Péclet numbers Pe1 and activity numbers Ac. A high value indicates a
dynamic substrate, and a low value indicates that the substrate is static.

we take the unsteady stokes limit, we may infer that the flow and dynamics observed
are at all times in the largest part due to the active stress generated at the moment
observed, and not much prior.

One can calculate a histogram of the kinetic energy, that is, tally how often the system
finds itself having a certain kinetic energy, in order to obtain more insight on the
friction term. The kinetic energy is given by

Ekin = ρ

2



ε
|u|2. (3.21)

A histogram of the logarithm of the spatially averaged kinetic energy succinctly dis-
plays the effect of the friction term (figure 3.8). With its inclusion, events of high
kinetic energy are no longer observed, and the distribution of the kinetic energy is
more concentrated about the mean. This is in contrast to the case without a friction
term, where the kinetic energy distribution is concentrated at the high-end of the
distribution.

This friction term only contributes significantly when the velocity is sufficiently large,
which is not the case of interest in this work. As such, it can be regarded as a numerical
technique to avoid extreme velocities. The large mean velocities that develop in the
absence of friction obscure the more interesting dynamics present in both cases.
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It was predicted that low Péclet numbers would not allow for a spatial pattern to
develop, and that therefore no flow would ensue; it was also predicted that a low
magnitude activity number |Ac| would not result in flow. Those predictions are shown
to be accurate in figure 3.9, where the deformation tensor is shown for varying activity
and Péclet numbers. Interestingly, the results are slightly dependent on the sign of the
active force: more deformation occurs at for the same parameters for a negative sign
on the active force.

Two notable behaviours were observed across a wide range of parameters. The
first—where the active force has a positive sign—is shown in figure 3.7. The con-
centration of the first chemical forms short stripes oriented at random angles of width
related to the chemical wavelength, perpetually moving around and morphing into
and out of existence (see appendix E for a visualisation). This leads to an isotropic
power spectrum with a peak at the chemical wavelength of the classical Brusselator.

In the case of a negative sign on the active force, rather than forming stripes in the
chemical concentrations, the system appears to favour a regular grid of circular dips
in the concentration (see appendix E for a visualisation). In the case that the chemical
wavelength is such that this grid of circles does not fit an integer number of cells in the
simulation domain, the circles that form are either too large, and tend to shrink, or too
small, and tend to grow. In the second case, the circles move towards each-other and
combine to form a larger circle. These circles are larger in diameter than the chemical
wavelength dictates, and they soon begin to shrink. The area between them grows
larger all the while, and new circles begin to form in the space between the existing,
shrinking circles. Eventually, the initial grid of circular dips is restored, and the cycle
repeats.

Viscoplastic rheology. With a sense of the system’s behaviour for various combina-
tions of activity and Péclet numbers, we continue to explore the remaining degree
of freedom in the parameter space: the Bingham number. We restrict the analysis
to a slice of this parameter space along the Ac—Bi plane by fixing the Péclet number
at Pe1 = 103, since a number smaller than this would have a chemical wavelength
too large, obscuring larger scale phenomena, and a number much larger would have
spatial patterns not resolvable on the current mesh.

A parametric study of the spatio-temporal mean of the deformation tensor magnitude
confirms the predictions made earlier—namely that for increased Bingham number,
a larger activity number would be required for substantial deformation to occur
(figure 3.10). The predicted arrested regime is present in the data, however precisely
what threshold on the deformation tensor magnitude should count as arrested is left
up to interpretation.

As for the scaling, a least-squares fit of the isoline marking ̸
∣∣IIγ̇

∣∣〉= 1↘10↑3 suggests
the relation

∣∣IIγ̇
∣∣△

 |Ac|1.2

Bi if Ac < 0,
|Ac|1.1

Bi if Ac > 0.
(3.22)
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Figure 3.10: The spatio-temporal mean of the deformation tensor magnitude ̸
∣∣IIγ̇

∣∣〉x,t is shown
for logarithmically increasing activity |Ac| and logarithmically increasing Bingham number Bi.
Both signs of the active force are shown, negative on the left and positive on the right. The line
for which ̸

∣∣IIγ̇
∣∣〉= 1↘10↑3 is drawn for both signs of the active force. The slope of this line is

fitted, and is 1.1 for a positive sign and 1.2 for a negative sign.

This reveals a slight peculiarity: the relation depends on the sign of the active force.
This difference is too slight to be claimed a feature of the system, and could likely arise
due to numerical inaccuracies.

The introduction of a yield-stress results in a never ending cycle where the chemical
sector develops independently to the mechanical sector on an unyielded domain,
building up an active stress and eventually causing the fluid to yield. But before long
the friction term dominates, allowing a portion of the fluid to return to an arrested
state. The cycle then repeats, resulting in a dynamic sea of yielded and arrested
domains perpetually flowing past each other. This is the case for a positive sign on the
active force, and it largely resembles the Newtonian counterpart.

A histogram of the typical length of these arrested domains reveals a bimodal dis-
tribution when Ac < 0 and a trimodal distribution when Ac > 0 (figure 3.11). This
complicated emergent phenomenon is a prime avenue for further research; we will
only briefly touch upon it. As the behaviour appears fundamentally different between
the choices of sign of Ac, it is best to separate the two.

Ac < 0. For low Bingham numbers, by far the most of the arrested domains are smaller
than a fifth of the simulation domain in length. The next most frequent arrested
domains nearly span the entire system, and decrease in length with increasing
Bi. At a certain critical Bi (which appears to be a function of Ac), the distribution
sharply divides between these two modes.

Ac > 0. A similar phenomenon occurs, but three modes are identified. The first mode
is the most frequent and similar in nature to the Ac < 0 case. The second is also
reminiscent of the previous case, but the typical domain length is significantly
smaller. Interestingly, a third mode of opposite trend to the second manifests.
The latter has domain lengths growing with increasing Bi, eventually saturating
to the system size.
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Figure 3.11: A histogram of typical linear lengths of the arrested domains, separated by thin
flowing edges, is shown for increasing Bingham numbers. The colour scale has been truncated
at the maximum value of the upper bands; the lowest band is two orders of magnitude larger.
(left) A negative sign on the active force mostly gives rise to small domains, but also to domains
nearly spanning the system size. The size of the latter decreases with increasing Bingham
number, until a critical point, past which the most likely arrested domain sizes are either
very small, or ones that span the entire system. The band of smaller sizes is attributed to
dynamic periods in the evolution, while the other band is associated with relatively longer
lived domains. (right) A similar relationship occurs for a positive sign on the active force,
with the complication of a third band of arrested domain sizes. The latter grows in size with
increasing Bingham number.

Two distinct kinds of chemical concentration patterns occur in the Bi—Ac space of
positive active force depicted in figure 3.10—a highly structured, largely static, and
anisotropic zig-zag stripe pattern; and a dynamic, isotropic sea of features of wave-
length related to the chemical wavelength of the classic Brusselator. Examples from
both classes of patterns are shown in figure 3.12. A transitional period exists between
the two regimes, resembling the stripe pattern of the classical Brusselator (see ap-
pendix D). Defects in the stripe pattern appear more frequently in this transition
region than in the high yield-stress regime at steady state, even though both contain
similar defects at some point in the pattern’s evolution. Interestingly, all of the ob-
served patterns for a negative sign on the active force were roughly isotropic. The only
deviation from isotropy seems to be the tendency to form hexagonal patterns rather
than circles. This is not the case for a positive active force, as is evident in figure 3.12.
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Figure 3.12: Each row shows: (left) the concentration of the chemical species at t = 100;
(middle) the power spectrum of this concentration field, truncated at the Nyquist frequency,
where the frequency has been rescaled by the chemical wavelength of the classical Brusselator;
and (right) horizontal and vertical slices, and a radial average of this power spectrum. The
two-dimensional spectrum has been tallied into bins of constant wavenumber. (top row) A
high yield-stress results in a concentrated and anisotropic distribution of spatial wavelengths
in the chemical concentration. (bottom row) A low yield-stress has a wide, spread out and
isotropic distribution of spatial wavelengths. For simulation parameters refer to row 20 of
appendix C.



Chapter 4

Deformable Interface Systems

Macroscopic living organisms largely settled on the cell as an atomic building block,
likely as a means to organise biochemical reactions in space46. These cells contain a
large number of coexisting systems that are all perpetually out of equilibrium. This
dynamic soup of organelles—the cytoplasm—could perhaps in part be abstracted as
an active reaction-diffusion-advection system. A simplified model of this extremely
complicated system may shed light on cell migration, a process known to play an
essential part in wound healing, immune response, embryonic development and
cancer spreading47–49.

The cell is but one example of a more general phenomenon of phase separation. It
is likely that many processes in biological systems are dominated by the interplay
between interfacial dynamics, and bulk forces and flows. The mere introduction of
a finite domain separated from the bulk by an interface opens the door to countless
phenomena, like swimming, fingering, rotation, and emergent behaviour in the case
of a great number of domains.

Another example of an interface-bound active fluid is the Drosophila (a fruit fly) during
its gastrulation phase, which exhibits pulsatory contraction cycles leading to whole-
tissue extension50. Those contraction cycles arise from feedback between advection,
contractility, and the binding of motor proteins and their activators, suggesting the
use of a reaction-diffusion-advection model50.

We will transition from a doubly periodic domain to a finite cell in a stepwise fash-
ion, starting with a static substrate before re-introducing the mechanical sector and
allowing the interface to deform. After having studied the interplay of a dynamic
interface with the active fluid, we will incorporate surface tension into the model,
finally forming a two-dimensional model of an active viscoplastic fluid confined to a
deformable droplet.

In order to demonstrate the reaction-diffusion system’s solution dependence on the
boundary conditions, we briefly revisit the classical Brusselator system and let it

48
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evolve in a static domain of circular geometry. The interface will be made deformable
shortly. The confinement can be achieved by making the diffusion coefficients and the
reaction rates spatially variable, and non-zero (but uniform) only within the circular
domain. As will be shown momentarily, the solution of the chemical sector depends
heavily on the boundary conditions.

The dimensionless Brusselator equations are adapted to take the circular domain
into account by defining a smooth and continuous field which takes the value unity
inside the domain, and zero everywhere else. This so called fraction field φ defines
the domain and hence the interface; the location of the latter is determined by the
equipotential {x|φ(x) = 0.5}. One multiplies the diffusion coefficient, reaction terms
and concentration fields by the fraction field to restrict the dynamics to the domain it
represents:

ω(φC1)
ωt

=→ ·

φ→C1


↑φ

[
(Da2 +1)C1 +C 2

1C2 +4.5
]

, (4.1)

ω(φC2)
ωt

=→ ·

φD→C2


+φ

[
Da2C1 ↑C 2

1C2
]

. (4.2)

The fraction field φ will be denoted f in Basilisk in order to comply with community
standards. It is defined in the range [0,1], so when performing operations that may
bring its value outside this range, its value needs to be constrained accordingly. The
program written in section 3.2 will be taken as a basis.

scalar f[]; // the fraction field

event init(i = 0) {
...

foreach() {
double r = L0/2.0 - 0.05*L0; // diameter just a bit smaller than L0
f[] = sq(x) + sq(y) < sq(r);
C1[] = Da1 / Da4 * f[];
C2[] = ((Da2 / Da1) * (Da4 / Da3) + 0.01 * noise()) * f[];

}
}

event integration(i++) {
dt = dtnext(DT);

scalar r[], beta[];
foreach() {

r[] = Da1 * f[];
beta[] = (Da3 * C1[]*C2[] - Da2 - Da4) * f[];

}
face vector d1[];
foreach_face() {

d1.x[] = D1 * clamp(face_value(f, 0), 0, 1);
}
diffusion(C1, dt, d1, r, beta);
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Figure 4.1: The classical Brusselator is in-
tegrated numerically on a circular domain
with a small kink to demonstrate that the so-
lution is negligibly dependent on the under-
lying grid. (top) The diffusion coefficients
and reaction rates are zero everywhere out-
side the domain. (bottom) Additionally, it
is enforced that the concentration fields
vanish at the interface. This restricts the
solution space; that is most apparent for
ς = 0.04, where stripes are formed instead
of heaxagons near the boundary. For simu-
lation parameters refer to row 6 of appendix
C.

¬= 0.04 0.1 0.98

foreach() {
r[] = Da2 * C1[] * f[];
beta[] = - Da3 * sq(C1[]) * f[];

}
face vector d2[];
foreach_face() {

d2.x[] = D2 * clamp(face_value(f, 0), 0, 1);
}
diffusion(C2, dt, d2, r, beta);

}

The results are presented in figure 4.1, where it is clear that the boundary conditions
have a dominant influence on the solution. We have additionally added a kink to
the circular domain in order to demonstrate that the numerical solution does not
strongly depend on the grid. A very small kink is sufficient to dictate the location of
the defects in the solution, from which we infer that the symmetry is broken by the
domain geometry and not by, for example, the aliasing caused by projecting a circle
onto a Cartesian grid.

The chemical concentration is not necessarily zero on and near the domain boundary,
and so the concentration field is not continuous across the boundary. This makes
gradients of the concentrations numerically unstable. To avoid this issue, we enforce
that the concentration must vanish at the boundary, and let the reaction-diffusion
system give rise to a continuous solution. This restricts the solution space, and we
illustrate the ensuing effect on the Brusselator system in figure 4.1. In Basilisk, this
requirement is implemented by multiplying the concentration fields with the fraction
field.

event integration(i++) {
...
foreach() {

C1[] = C1[] * f[];
C2[] = C2[] * f[];

}
}
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Dynamic interface. We will now re-introduce the mechanical sector and allow the
interface to be advected by the fluid, making it dynamic. Yet we should delay the
inclusion of surface tension in order to investigate some features that do not depend
on its presence. The fluid both inside the droplet and outside is Newtonian, for now.
The droplet will shortly be made to be of a viscoplastic fluid.

As is typically the case for partial differential equations that model a physical system,
the classical Brusselator PDEs are an approximation to some integral formulation
regarding the chemical concentrations51. This approximation is generally a good one,
but it fails near discontinuities of the integral formulation, which are typically present
at interfaces between media. As such, these interfaces require special treatment in the
numerical solver51.

One approach to model the location and dynamics of interfaces is the volume of
fluids (VOF) method, otherwise called the fractional marker volume method. For each
material, each computational cell is said to have either zero volume, unity, or any
value in between. The interface is identified by selecting the cells with a fractional
volume, hence the name fraction field51–54.

It may seem that the interface represented this way would end up being smeared or
fuzzy, but a reconstruction step ensures that it is sharp51. The VOF method is not
prohibitively expensive in two dimensions, but for three dimensional simulations
one should consider using a recently developed sharp-interface method by Neiva and
Turlier55.

The two-phase solver implements the VOF method and exposes a particularly simple
user interface. It is only necessary to define a distance function for the initial interface.

...

#define FILTERED 1 // smooths the fraction field and defines sf[]
#include "two-phase.h"

int main(int argc, char * argv[]) {
...
mu1 = mu2 = 1.0 / Re;

}

event init(i = 0) {
...

double r = 1.0;
fraction(f, - sq(x) - sq(y) + sq(r));

event("tracer_advection"); // this sets sf[]

foreach() {
double smeared_fraction = clamp(sf[], 0, 1);
C1[] = (Da1 / Da4) * smeared_fraction;
C2[] = ((Da2 / Da1) * (Da4 / Da3) + 0.01 * noise()) * smeared_fraction;

}
}
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Figure 4.2: An overview of observed behaviours for different combinations of Péclet number
and activity number (Ac). The negative activity numbers are plotted on the left and are marked
in blue, and the positive on the right and in red. The combined "intensity" of the Péclet
number and activity number are rendered in the background as an aiding visual cue. Examples
are provided for notable behaviours: (square) sharp angles, (triangle) fingering, (diamond)
pattern in concentration, (circle) circular, (plus) network, and (cross) spray. For simulation
parameters refer to row 7 of appendix C.

Consider a diagram mapping the system’s behaviour as a function of the Péclet number
and the activity number. We can immediately predict that for low activity (small |Ac|),
a negligible flow field will develop, if at all. Hence we predict that the chemicals
will not be advected very much, the interface will not change much from its initial
geometry, and the system will bear a resemblance to the classical Brusselator system
on a circular domain.

Recall that if the flow field is zero everywhere, then the activity term amounts to a
correction to the pressure, and the flow will remain irrotational forever (section 2.4).
We can therefore expect the flow field to have little vorticity. A positive activity number
would resemble a negative correction to the pressure and vice versa.

For small Péclet numbers, we expect that diffusion will dominate the system’s be-
haviour. The chemical concentration should then be more or less uniformly dis-
tributed across the domain bounded by the interface. This prevents the active stress
from driving the flow, as the activity term is proportional to the gradient of the chem-
ical concentration. As the Péclet number increases, the chemical wavelength will
decrease with the square root of the Péclet number (section 1.2.2). Eventually, the
wavelength will be such that at least one node will fit in the circular domain. The
chemical concentration will then develop a spatial pattern, giving rise to a non-zero
gradient in the concentration and therefore a non-zero force due to the active stress.

A parameteric study of Pe1 and Ac is shown in figure 4.2 and reveals numerous distinct
phenomena with regards to the interface shape, behaviour, and the evolution of the
chemical reaction occuring within it.

For low Péclet numbers we are comforted to see that the interface remains in its
initial shape, and the chemical concentration is approximately uniform. As the Péclet
number is increased while maintaining a small activity number, the interface remains
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Figure 4.3: (top) Snapshots of the system
for logarithmically increasing Péclet num-
bers. (bottom) The maximum of the average
interface radius as a function of the Péclet
number. This radius is calculated as the
square root of the area bound by the inter-
face, normalized so that a circular inter-
face of area ϕ is assigned unity radius. For
simulation parameters refer to row 16 of
appendix C.
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roughly circular, but a spatial pattern develops in the concentration fields. Past a
certain point, increasing the Péclet number even further ought to result in patterns of
wavelength smaller than is resolvable in the simulation, and the concentration fields
become uniform once more.

For high-magnitude activity numbers |Ac|⇓ 1 the interface undergoes a topology
change, often many times over. A positive sign on the active force results in roughly
circular blobs, while a negative sign results in a network-like structure. In almost
all cases where a topology change occurs, the resulting domains have a uniform
concentration of the chemicals.

It is in the intermediary regime that the most interesting behaviour is observed, where
the active stress is strong enough to produce a flow, but not strong enough to cause a
flow that is faster than the chemical reaction timescale. For a positive sign on Ac, a
flower-like pattern emerges in the chemical concentration, and the droplet slightly
deforms but generally maintains a circular shape. For a negative sign on the active
force, fingering is observed. The slowly growing fingers are spaced regularly and have
similar features.

Shifting the analysis to high-magnitude activity numbers |Ac|, we can no longer expect
the flow field to be weak and irrotational. Since there is no surface tension to hold the
interface intact, eventually, a change of topology should occur. Since the chemical
concentration is forced to vanish at the interface, a definite relation between the Péclet
number and the size of the resulting interfaces is expected to manifest.

Since each of these resulting domains are strictly smaller than the initial domain, we
can alternatively view these domains as having the same size as the initial domain,
but with a decreased Péclet number. Therefore, we expect the interface to undergo
a topology change many times over, until the resulting domains are similar to the
case of the initial system if it were to have a smaller Péclet number. Such a diffusion
dominated region will not be able to build up any further flow. All this implies the
existence of stable interfaces containing an area of size related to the Péclet number,
and indeed such a relation exists—see figure 4.3.

In fact, the relation mirrors the scaling of the chemical wavelength. There is plenty to
suggest that the maximal interface size scales with this chemical wavelength:
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maxR △ Pe↑1/2
1 . (4.3)

4.1 Surface Tension

In systems where the area spanned by the interface is large compared to the bulk
that it separates, surface effects become dominant56. One such effect is surface
tension. Molecules on the interface between two distinct fluids will form a different
number of bonds on each side on average56. The difference in number of bonds
results in the interfacial molecules having a higher energy than the bulk molecules,
and consequently, it costs energy to form an interface56.

An alternative interpretation of surface tension frames it as a force per length, here
assigned the symbol σ. Basilisk includes a solver for surface tension effects, and it is
this interpretation that is used in its implementation. The body force representing
surface tension is then given by

σfσ =σκϖsn, (4.4)

where κ is the mean curvature of the interface, σ is the constant surface tension
coefficient, n is the unit vector normal to the interface, and where ϖs is the Dirac delta
function centered on the interface.

With the rescaling

x := Rx, t := R
U

t , (4.5)

u :=Uu, p := ρU 2p, (4.6)

C1 :=C0C 1, C2 :=C0C 2, (4.7)

we obtain the dimensionless mechano-chemical system

Du

Dt
=↑→p + 1

Re
↗2u+ 1

λ
fλ+Ac fα+

1
We

fσ, (4.8)

→ ·u= 0, (4.9)
DC1

Dt
= 1

Pe1
↗2C1 ↑ (Da2 +1)C1 +C 2

1C2 +4.5, (4.10)

DC2

Dt
= 1

Pe2
↗2C2 +Da2C1 ↑C 2

1C2. (4.11)

Here, the independent parameters are the dynamic pressure p := p/U 2ρ, the Reynolds
number Re := RUρ/µ0, the Weber number We := RU 2ρ/σ, the dimensionless chemical
concentrations C 1,2 :=C1,2/C0, the dimensionless friction relaxation time λ :=λU /R,
and the dimensionless activity parameter Ac :=αC 2

0 /ρU 2.
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Figure 4.4: An overview of observed behaviours for different combinations of Péclet number
and activity number (Ac), for three distinct Weber numbers. This is a continuation of figure 4.2.
Examples are provided for notable behaviours: (up triangle) non-circular droplets, (right
triangle) snaking, a finite-size effect. The other markers are exhibited in figure 4.2. For
simulation parameters refer to row 8 of appendix C.

To implement surface tension in the simulation, we make use of the tension header,
for which we must provide the constant surface tension coefficient for each fraction.
Recall that we initialise the simulation with a single fraction f.

#include "tension.h"

int main(int argc, char * argv[]) {
f.sigma = 1.0 / We;
...

}

The effect of surface tension on an interface is such that the energetically preferred
configuration is that which minimises the length spanned by the interface57. In two
dimensions, the shape which has the smallest ratio of boundary to area is the circle,
hence, under no additional influence, a disc is the energetically preferred geometry of
a given fluid fraction.

In the presence of other forces, the fraction may deviate from the ideal geometry of a
disc. But the effect of surface tension is a stabilising one, and the stronger the surface
tension, the less likely it is that the fraction geometry will deviate from a disc. The
breakup into smaller domains depicted in figure 4.3 is an extreme example of such a
deviation, which at one point resulted in a topology change in the fraction.

The stabilising effect of surface tension is evident in figure 4.6, in which it is shown
that a change in topology is inevitable for a large enough active force. But increasing
the relative importance of the surface tension (decreasing the Weber number) defers
this inevitability to an even larger force. For an infinitesimally small Weber number,
the surface tension would be so strong that if the other parameters were finite, the
interface would never deviate from a perfect circle. It is in the intermediate regime
that interesting behaviour is expected.
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Figure 4.5: An overview of observed behaviours for different combinations of Weber and
activity numbers. Examples are provided for notable behaviours: (left triangle) pulsating and
motile droplet, (star) network structure, often with holes. The other markers are exhibited
in figure 4.2. The chemical concentration values have been truncated from a maximal value
of around 6 to better display notable features. For simulation parameters refer to row 9 of
appendix C.

Figure 4.6: A thrice rendered binary map
signifying whether a topological change has
occured to the initial droplet, as a function
of the Péclet and activity numbers (positive
only). For sufficiently large activity and
Péclet numbers, the droplet rips apart into
smaller droplets. For simulation parameters
refer to row 10 of appendix C. 1 2 3
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The parameteric study of Pe1 and Ac is now repeated for varying We and is shown in
figure 4.4. While in the absence of surface tension a tendancy existed for drastic and
repeated topology changes in the interface, now these events are greatly oppressed. A
parametric study of We and Ac is shown in figure 4.5, revealing new phenomena, the
most notable of which is associated with intermediate Weber and activity numbers.

Viscoplasticity. Like surface tension, viscoplastic rheology is expected to have a
stabilising effect on a droplet. Forces that are below the yield-stress criteria do not
cause a flow, and as such the droplet is insensitive to such minute forces. Nevertheless,
the chemical sector continues to evolve even in the absence of flow, and will eventually
give rise to chemical gradients strong enough to surpass the yield-stress criteria.

In the parametric space spanned by Bi and Ac (considering only negative Ac), we
observe three classes of behaviour (figure 4.7). The first is the most common: a
tendency for the entire droplet to solidify, and remain solid regardless of the evolution
of the chemical sector. Once the droplet remains rigid after the chemical sector has
reached a steady-state, nothing remains in the system to break out of this state. This
state is largely unlikely in the Newtonian limit Bi ↓ 0, but when droplet fragmentation
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Figure 4.7: A parametric study of the Bi—Ac
plane for Ac < 0. Three phenomena are sin-
gled out: (gray) the arrest of the droplet, in
which no flow occurs and the interface is
static; (blue) a pulsatile droplet, in which
the droplet deforms at a definite temporal
frequency; and (red) a change of topology
in the droplet occurs. When a droplet is
both pulsatile and fragmented, it is marked
broken. All cases that do not fall into these
categories are coloured white. For simula-
tion parameters refer to row 15 of appendix
C. 3210
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occurs, it is possible for the chemical wavelength to fall beyond the droplet diameter,
thereby leading to static droplets. For all shown Bi, and up to a certain Bi, there is a
band of Ac in which the droplet is not arrested and is rather dynamic.

These dynamic droplets form the second phenomenon: a periodically pulsating
droplet with a net velocity in semi-random directions. This rich phenomenon is the
subject of the next section.

Lastly, the final notable phenomenon is fragmentation. Since the resulting smaller
droplets effectively have a smaller Péclet number, we refrain from analysing the dy-
namics any further and simply mark the droplet as broken.

4.2 Pulsating Motile Droplet

It has been shown by Camley et al. that a minimal model that abstracts the cell as
a reaction-diffusion equation that evolves inside a droplet is capable of movement
by virtue of surface tension, and picking a direction through polarisation by virtue
of the chemical concentration gradient58. The authors argue that actin (a protein)
polymerisation at the front of the cell and contraction driven by myosin (a motor
protein) at the rear are the dominant forces acting on the cell’s interface. Which part of
the cell is made to be rear or front is determined by a wave pinning reaction-diffusion
equation, resulting in a polar distribution of one of the morphogens (the polarity
protein Rho GTPhase)58,59. That is, this protein tends to concentrate in half of the cell
geometry, and the region of high concentration is the cell front. The authors do not
consider advection effects inside the cell.

For a specific set of parameters, the cell motility model of Camley et al. results in a
stationary state inside the cell, while the forces acting on the cell’s interface propel it
forward58. Such a stationary state may not be expected to occur often in the presence
of advection and an active stress tensor. This section will exhibit our model’s ability to
represent motility via a mechanism distinct from that of Camley et al.
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Figure 4.8: Snapshots of a periodically pulsating
Newtonian droplet shown for the duration of one
period (not at equidistant times). The droplet’s
trajectory is marked with a circle every 1/16 time
units. For simulation parameters refer to row 12 of
appendix C.
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When the chemical wavelength is of the order of the droplet diameter, the system is
expected to develop a single region of high concentration in C1. This feature allows
studying the essential properties of the system without the complications of a spatial
pattern in the morphogen concentration. The active force will then stem from a single
region inside the droplet, and will point outwards for negative Ac since the chemical
concentrations are made to vanish at the droplet interface (recall fa ↖→C2).

A realisation of this setup with We = 0.1 and Newtonian rheology is shown in figure 4.8.
A region of high concentration slowly forms in C1: a radial pattern decreasing in
amplitude towards the periphery (figure 4.9). At the same time, a concentric ring
pattern forms in C2. The product of C1 and the ring pattern in the gradient of C2 forms
the active force, which inevitably overpowers the surface tension, pushing outwards
in all directions. In the presence of minute fluctuations, the symmetry breaks in
a random direction and the interface gives, starting a brief positive feedback loop
where C1 and C2 are advected in the same direction, increasing the overlap of the
concentrated spot of C1 with the ring pattern of →C2.

This brief positive feedback loop between the active force and advection effects ac-
celerates the droplet in the direction of the bulge, causing it to travel a distance of
several radii. This burst also causes the droplet to suddenly become long and thin,
mixing the chemicals and settling on a geometry in which highly concentrated regions
cannot occur in the chemicals. This weakens the active force, allowing surface tension
to dominate again, so that the droplet slowly returns to the shape of a circle. The cycle
then repeats (key moments are shown in figure 4.9).

The pulsatory behaviour only manifests for a short range of activity and Weber num-
bers, but is of a constant pulsation frequency for that range of activity numbers
(figure 4.10). This suggests that the pulsation frequency is determined by the relative
strength of the surface tension, but not by the strength of the active force. The activity
number is just required to be large enough to deform the interface, but not so large
so as to break it. Otherwise, it is not surprising that a stronger surface tension gives
rise to a faster pulsation cycle, as the droplet is able to return to its initial shape more
quickly in that case.
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Figure 4.9: Snapshots in time of the droplet at activity number Ac =↑50 depict one full pulsa-
tion cycle, for which the concentration of the first chemical species is shown (left), alongside
the magnitude of the gradient of the second (right). (t = 0, relative) The cycle begins with
|→C2|⇔ 0 at the center of the droplet and a roughly uniform and low in value distribution of C1.
Since fα↖→C2, the interface is roughly stationary. (t ⇔ 0.5) C1 accumulates in a concentrated
spot at the center. (t ⇔ 1.0) A ring-like pattern develops in C2, and the concentrated spot of C1

is fully developed. A ring of →C2 overlaps with a high-value region of C1. (t ⇔ 1.5) the active
force fα ↖ C1→C2 is strong enough to distort the interface, bulging outwards and further
increasing the aforementioned overlap, triggering a rapid elongation of the interface. (t ⇔ 3)
The chemical sector cannot sustain a region of high concentration for such a thin geometry,
and so surface tension dominates again. (t ⇔ 6.0) Surface tension has restored the circular
shape of the droplet, and the cycle repeats. For simulation parameters refer to row 12 of
appendix C.

The dominating and competing effects in this cycle are the surface tension and active
stress, hence a scaling analysis is warrented. Ignoring all other effects, a comparison
of the two forces

Ac C1→C2 △
1

We
κϖsn, (4.12)

leads to the order of magnitude relation

κ△ Ac. (4.13)

Figure 4.10: The mean curvature of the
droplet is measured across time, and the
power spectrum of the resulting signal is
shown for increasing activity number (left)
and increasing surface tension importance
(right). Harmonics are visible since the sig-
nal is not a perfectly sinusoidal. For simula-
tion parameters refer to rows 12 and 24 of
appendix C.
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Figure 4.11: (left) The local curvature of the droplet is averaged over the interface and plot-
ted against the mean magnitude of the active stress. (right) The temporal average of the
droplet-average surface tension force magnitude is shown for increasing |Ac/Ac0|, alongside
the temoral maximum length of the droplet’s bounding box. The curvature curve has an aver-
age slope of 2.0↘10↑4; the length curve has an average slope of 1.4. For simulation parameters
refer to rows 13 and 14 of appendix C.

Numerical simulations show that a definite relation of this form exists between the
local curvature and the activity number (figure 4.11).

In the middle of the pulsation cycle, around 3 time units in figure 4.9, the droplet
reaches maximum elongation. We can crudely approximate its shape as a long thin rod
with round ends of length L and thickness R1, where R1 is also the radius of curvature
of the round ends. Calling the droplet radius at rest R0, we can claim the following by
conservation of matter thus also of area

ϕR2
0 ⇔ϕR2

1 +LR1, (4.14)

or

L ⇔
ϕ(R2

0 ↑R2
1)

R1
. (4.15)

But since R1 ∀ R0, we may write

L ⇔
ϕR2

0

R1
△ 1

R1
. (4.16)

The average curvature of the interface ̸κ〉φ is dominated by the far ends of the long
shape, relating the local radius of curvature at the ends to the average curvature, giving
(see figure 4.11)

L △ ̸κ〉φ △ Ac. (4.17)

Curiously, the droplet tends to occasionally turn left or right with equal probability,
mostly travelling straight ahead (figure 4.13). The tendancy to travel straight is likely
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Figure 4.12: Continuation of figure 4.12 for a
viscoplastic droplet. Note the inhibition of a
return to circular shape due to arrest of the
droplet. This less symmetric shape leads to a
preferred direction for the subsequent pulsa-
tion. For simulation parameters refer to row 17
of appendix C.
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Figure 4.13: The probability of change of
direction is shown for one Newtonian (top)
and one viscoplastic (bottom) pulsatory
droplet. The former mostly travels straight
but sometimes makes a right or left turn
with equal probability, while the viscoplas-
tic droplet maintains the same direction
of travel for many periods in a row. Both
graphs have been truncated; the Newto-
nian case peaks at a value of 7.3, and the
viscoplastic at 20. For simulation parame-
ters refer to row 17 of appendix C.
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due to weak flow in the same direction inside the droplet, which advects the chemical
pattern as it forms. And the left and right turns appear to be due to the chemical
pattern forming before the droplet has returned to a circular shape, so that the pattern
develops in an ellipsoid that has its major axis aligned perpendicularly to the direction
of travel.

A similar effect is certainly dominant in the case of viscoplastic droplets (figure 4.12),
which for certain yield-stress and activity combinations, tend to travel straight ahead
indefinitely (figure 4.13). A direct consequence is that such viscoplastic motile droplets
travel much further than their Newtonian counterparts.

To conclude, it is fascinating that an active droplet under the influence of but the
leading order terms of the active stress gradient expansion displays such rich phenom-
ena. This minimal model gave rise to a pulsatory motile droplet, and the addition of
viscoplasticity stabilised the dynamics to the effect of the droplet being able to travel
indefinitely in a single direction.
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Conclusion

In this work we explored the dynamics of an incompressible two-dimensional active
fluid of viscoplastic rheology, both on a periodic domain and confined to a droplet
having surface tension, by constructing a direct numerical simulation using the open-
source PDE solver Basilisk. To the extent of our knowledge, a direct simulation of
such a system does not exist in literature. Even when restricting oneself to Newto-
nian rheology, a plethora of distinct phenomena resulted from the coupling of the
Brusselator reaction-diffusion model with the mechanics of fluid flow. These include
fragmentation, network structures, pulsations, motile droplets, pattern formation in
the chemical concentration different to the static substrate case, stable non-circular
droplet shapes, phase-separation dynamics, and more. And indeed, the complication
of viscoplasticity resulted in dynamics not observed in the Newtonian case, such
as pulsatory motile droplets that can maintain their direction of travel across many
pulsations.

We provide a didactic and accessible presentation of the simulation implementation to
support comprehension and complement the existing documentation of the excellent
Basilisk solver. As the latter implements a highly domain specific language, invariably
some unique conventions in the language design become a point of struggle for new
users. Care has been taken to elaborate on such pain points, so as to form a complete
and educational example for the construction of a Basilisk program.

The two-dimensional nature of the model developed here requires interpretation in
order to justify its application to a physical system. It has not been the focus of this
thesis to provide the connection to a physical system, but rather the focus has been
to develop a minimal model to facilitate emergent phenomena. Nevertheless, this
model and the simulation program that implements it both are readily modifiable
to accommodate a closer connection to physical systems. One particular research
avenue appears promising: cell motility and locomotion. In that scenario, one would
consider this model to represent the contact layer of the cell with the substrate, such
that the interface bound domain in the model would correspond to the cell membrane.

62
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The reaction-diffusion system can be substituted for other reactions that may be more
representative for this application. This demonstrates a key strength of the approach
taken in developing this model: the ease with which one can prototype adjustments
that would otherwise require large-scale revisions in implementation.

Many phenomena have been observed but were out of scope for the present work.
Those include the bimodality of arrested domain length distribution in the active fluid,
the splitting of droplets into smaller, similarly dynamic ones, the formation of stable
and static droplets of non-circular geometry, finger formation, and the formation of
flower-like patterns in the chemical concentration. Each of these would make for
interesting follow up works. One could also implement elasticity in the model, to bring
it even closer to the realm of biology, or study different chemical reactions to the same
effect. Moreover, it would prove interesting to study clusters formed of a large number
of motile droplets, which would perhaps give rise to unique emergent phenomena.

When exploring the large parameter space of this system, we opted to consider pairs of
parameters at a time, fixing one member at the most dynamic or interesting value and
substituting it for another parameter for consideration. This funnel led to the detailed
exploration of a pulsatory motile droplet, but it is clear that many more phenomena
are accessible with different parameter choices. For brevity, those phenomena have
been mentioned in passing only (but representations of these parameter subspaces
are provided in appendix D).

It is fascinating that such a rich spectrum of life-like behaviour emerges from a mini-
mal model concerning but the leading order terms in the gradient expansion of the
active stress.
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Appendix A

Linear Stability

Consider the steady-state of a reaction-diffusion system

Dn↗2Cn + fn(C1, . . . ,CN ) = 0. (A.1)

If the system is at a homogeneous steady-state and is unstable to a plane wave per-
turbation of non zero spatial frequency, then there is the possibility for spontaneous
pattern formation.

To analyze the stability of this system with regards to a small deviation from a homoge-
neous stationary state (C 1,C 2), we will linearise it with regards to that state by defining
ϖC1 :=C1(r, t )↑C 1, ϖC2 :=C2(r, t )↑C 2, which can be cast as

ωω

ωt
=Aω, (A.2)

withω := (ϖC1,ϖC2)T and

A= fi j +Di j↗2 =
(

f11 +D1↗2 f12

f21 f22 +D2↗2

)
. (A.3)

Here, Di j is are the diffusion coefficients, and the matrix formed by fi j is the Jacobian
of the reaction terms fn , and is given by

fi j =
ω fi

ωC j

∣∣∣∣
(C 1,C 2)

. (A.4)

We assume translational symmetry, and so the solution to this equation can be given
as a superposition of harmonic modes2

68



Appendix A. Linear Stability 69

ϖC1 =
→∑

l=0
a(1)

l eikl ·r↑iϱl (kl )t +c.c., (A.5)

where c.c. stands for complex conjugate, and we include it to ensure that the chemical
concentration is real valued. We can say the same for ϖC2 (with different weights a(2)

l ).
The dispersion law is found upon substitution of this solution and solving for ϱl as a
function of kl .

To solve for a single harmonic mode, we note that any solution

det(Al + iϱl I) = 0, (A.6)

where, defining k2 = |k|2 = k2
x +k2

y ,

Al =
(

f11 ↑D1k2
l f12

f21 f22 ↑D2k2
l

)
. (A.7)

We will again drop the subscript l . Since A is a 2↑2 matrix, we may reduce the above
to

ϱ2 ↑ i (trA)ϱ↑detA= 0, (A.8)

with as solution the dispersion relation of the linearised model

ϱ(k2) = i
2

(
trA±

⇒
ω

)
. (A.9)

It is now possible to see why a one-component reaction-diffusion equation can never
leave the spatially homogeneous state through an instability. One needs only to
linearise the system, given by

ωC
ωt

= D↗2C + f (C ), (A.10)

and solve for ϱ to obtain

↑iϱ=↑Dk2 + f1, (A.11)

where f1 is analogous to the Jacobian of the reaction term. It is evident that for f1 ∃ 0,
the system is linearly stable. And otherwise, the system could only lose stability at zero
wavenumber (which would classify it as type-III-s). But the exponential suppression
grows as k2, so by the time a wavenumber is reached that is meaningfully inhomoge-
neous, this suppression completely inhibits it. Hence, any spatial pattern that may
develop is of long wavelength and slowly growing, rendering it homogeneous for all
intents and purposes.



Appendix A. Linear Stability 70

The Turing instability. The reaction-diffusion systems we will consider are those
that are stable in the absence of diffusion (Di ↓ 0). Turing predicted that diffusion can
destabilise such a system5; to show this, we first write the criteria for linear stability in
the absence of diffusion

f11 + f22 < 0, (A.12)

f11 f22 ↑ f12 f21 > 0. (A.13)

Now in the presence of diffusion again, we see that since the diffusion coefficients
are non-negative, we have that trA< 0. Therefore, the reaction-diffusion system is
destabilised if and only if detA< 0.

We conclude that since the trace of A is negative, the transition to instability happens
when its determinant vanishes. This determinant is a parabola in k2 that opens
upwards. The first mode to flip the sign will then be at the minimum of this parabola.
That mode is given by

k2
c = D1 f22 +D2 f11

2D1D2
. (A.14)

We can therefore predict that the initial pattern that will grow exponentially in ampli-
tude will have a spatial wavelength of

λc = 2ϕ

√
2D1D2

D1 f22 +D2 f11
. (A.15)

From equation (A.14) and since k2
c ↙ 0, we know also that D1 f22 +D2 f11 ↙ 0. And

taking equation (A.12) into account, we infer that for the Turing instability to occur, it
must hold that sign f11 =↑sign f22. This is most readily seen by contradictions arising
from assuming otherwise. In combination with equation (A.12), this also implies that
sign f12 =↑sign f21.

We now recall that for diffusive instability, the following must hold

detA= f11 f22 ↑ f12 f21 ↑
(D1 f22 +D2 f11)2

4D1D2
< 0, (A.16)

which we can alternatively write as

D1 f22 +D2 f11 > 2
√

D1D2( f11 f22 ↑ f12 f21). (A.17)

If the system is stable in the absence of diffusion, then this is a necessary and sufficient
condition for the diffusive instability of a homogeneous steady state22.
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Observe that if one diffusion coefficient is a multiple of the other, D2 = αD1, this
condition becomes true at a critical diffusion coefficient Dcrit

1 = 0 when the Jacobian
of the reaction terms is taken to be fixed. In that case, any strictly positive diffusion
coefficient will allow for the Turing instability to occur.

Defining the two lengths l1 =
√

D1/
∣∣ f11

∣∣ and l2 =
√

D2/
∣∣ f22

∣∣, this condition can be
written as

1
2


± 1

l 2
1

⇑ 1

l 2
2


>

√
f11 f22 ↑ f12 f21

D1D2
, (A.18)

from which it is evident that one length must be sufficiently larger than the other, so as
to satisfy the above condition. This condition is considered restrictive, but is relaxed
when considering a non-stationary domain, which is in fact more representative for a
biological system23.

Since these lengths involve the diagonal elements of the reaction matrix, and the two
rates have opposite signs, one is given the name inhibitor and the other activator.
The rate of the inhibitor is negative and so inhibits its own growth, while the rate
of the activator is positive and so it amplifies its growth. When sign f11 = sign f21,
the activator amplifies the production of both chemicals, and the inhibitor, likewise,
affects both.

It has hereby been shown that diffusion can destabilise a reaction-diffusion system,
given that its linear representation takes the form

ω

ωt

(
ϖC1

ϖC2

)
=

(
f11 ↑D1↗2 f12

f21 f22 ↑D2↗2

)(
ϖC1

ϖC2

)
, (A.19)

with the conditions

sign f11 sign f22 =↑1,

sign f21 sign f12 =↑1,

f11 + f22 < 0,

f11 f22 ↑ f12 f21 > 0,
(A.20)

and

D1 f22 +D2 f11 > 2
√

D1D2( f11 f22 ↑ f12 f21). (A.21)

The Brusselator. Only some choices of parameters will result in spontaneous pattern
formation. We can use the linear stability analysis detailed previously to determine
the criteria for which pattern formation occurs. The Brusselator equations are lin-
earised around their trivial homogeneous steady state of (C 1,C 2) = ( a

d , d
c

b
a ); assuming

harmonic solutions, we get

Al =
(
b ↑d ↑k2

l
c

d 2 a2

↑b ↑ c
d 2 a2 ↑Dk2

l

)
, (A.22)
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but we will again drop the subscript l .

In the absence of diffusion, equation (A.12) implies that

b < ca2

d 2 +d , (A.23)

a ¬= 0. (A.24)

Note that in the absence of diffusion, trA= a2c/d . Therefore, now in the presence of
diffusion, the condition that detA> 0 corresponds to

b ↙
(⇒

d + a
d

√
c
D

)2

. (A.25)
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The Buckingham Pi Theorem

Let an arbitrary physical quantity q be represented by the n measurable quantities or
parameters W1,W2, . . . ,Wn

q = f (W1,W2, . . . ,Wn). (B.1)

These quantities are measured in terms of m fundamental dimensions L1,L2, . . . ,Lm .
Unless otherwise stated, these will be taken to be L1 = m,L2 = l ,L3 = t for mass, length,
and time, respectively. It follows that the dimension of any of these quantities, say Z ,
can be written [Z ] =∏m

i=1 Lγi
i , for some real numbers γ1,γ2, . . . ,γm .

These numbers form a dimension vector ε = (γ1,γ2, . . . ,γm)T . The matrix with as
columns the dimension vectors of all of the measurable quantities and parameters
is called the dimension matrix B ≃Qm↘n . Each row of this matrix corresponds to a
fundamental dimension, and each column to a measurable quantity or parameter.

The Buckingham Pi-theorem then states that we can write q in terms of k = n↑rank(B)
dimensionless quantities. Let x(i ) = (x1i , x2i , . . . , xni )T , i = 1,2, . . . ,k represent the k
vectors spanning the nullspace of B. Let a be the dimension vector of q . Finally, let y
represent a solution of the system By =↑a. At this point equation (B.1) can be written
as

ϕ= g (ϕ1,ϕ2, . . . ,ϕk ), (B.2)

whereϕ= q
∏n

i=1 W yi
i andϕi =

∏n
j=1 W

x j i

j . Note how f in equation (B.1) is a function of
n variables, whereas g in equation (B.2) is a function of k variables. We have managed
to represent the physical system in a way that requires knowing rank(B) less variables.
For a proof, refer to60.
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B.1 Poiseuille Flow

Newtonian rheology. Starting with the equations for incompressible Newtonian
fluids

ρ
Du

Dt
=↑→p +µ↗2u, (B.3)

↗ ·u= 0, (B.4)

we should like to eliminate unnecessary parameters, or to write these equations in
dimensionless form. This time, we will make use of the Buckingham Pi-theorem. This
theorem allows us to obtain the dimensionless parameters of the system by solving
a linear system of equations. For this, we must construct the so called dimension
matrix.

The obvious characteristic dimensions are H [m] for the channel half-height, and
U [ms↑1] for the average velocity. We know from the analytical solution to the dimen-
sional equations that if the flow is forced through the pipe with average velocity U , an
average pressure gradient ωP/L [mkg↑2 s↑2] will form. Since the geometry of the pipe
is determined by its aspect ratio, it is not necessary to also consider the pipe length as
a parameter.

The dimension matrix is then formed by considering the density ρ [kgm↑3] and the
viscosity coefficient µ0 [kgm↑1 s↑1] as well:

H U ρ µ ωP/L
kg 0 0 1 1 1
m 1 1 ↑3 ↑1 ↑2
s 0 ↑1 0 ↑1 ↑2

(B.5)

which yields the dimensionless groups

ϕ1 = Re := ρU H
µ

, (B.6)

and

ϕ= HωP
LU 2ρ

. (B.7)

Rescaling the pressure by U 2ρ, we get

Du

Dt
=↑→p + 1

Re
↗2u, (B.8)

→ ·u= 0. (B.9)
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The Buckingham Pi theorem further allows us to write

ωP =U 2ρ
L
H

f (Re), (B.10)

for some function f (Re). This function can be found by noting that from the no-slip
condition, we get that C2 = 0, and C1 = ReHωP/L, and that therefore

ux(y) = ReωP
2L

(2H ↑ y)y. (B.11)

Integrating this we obtain the following expression for the average flow rate

ωP = 3U
H

L
H

1
Re

. (B.12)

We see that if we were to obtain an average flow speed from this average flow rate, ac-
counting for the rescaled pressure, we would find that f (Re) ↖ Re↑1 in equation (B.10).

Viscoplastic rheology. We start with the equations for incompressible fluids

ρ
Du

Dt
=↑→p +→ ·ω, (B.13)

→ ·u= 0, (B.14)

with





ω= 2µ


1+ τ0⇒

2
∣∣IIγ̇

∣∣1/2


ε̇ when |IIτ|1/2 ↙ τ0,

ε̇= 0 otherwise.

(B.15)

For this problem, the system is the same as was the case for the Newtonian Poiseuille
flow, but with the complication of the yield-stress τ0[kgm↑1 s↑2]. The corresponding
dimension matrix B is

H U ρ µ0 τ0 ωP/L
kg 0 0 1 1 1 1
m 1 1 ↑3 ↑1 ↑1 ↑2
s 0 ↑1 0 ↑1 ↑2 ↑2

(B.16)

and the two vectors spanning its nullspace yield the following dimensionless groups:
the Reynolds number Re := HUρ/µ0, the Bingham number Bi := Hτ0/Uµ0, and the
dynamic average pressure gradient ωP/LU 2ρ.
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B.2 Reaction-Diffusion-Advection in a Droplet

The chemical sector is given by

DC1

Dt
= D1↗2C1 +k1 A↑ (k2B +k4)C1 +k3C 2

1C2, (B.17)

DC2

Dt
= D2↗2C2 +k2BC1 ↑k3C 2

1C2, (B.18)

where the reaction rates have units [k] = (kgm↑3)1↑ns↑1, and n is the order of the
chemical reaction.

And the mechanical sector is given by

ρ
Du

Dt
=↑→p +µ↗2u+ 1

λ
fλ+αfα+σfσ, (B.19)

→ ·u= 0. (B.20)

Besides the droplet radius R, the variables and parameters of the momentum equa-
tions are U ,ρ,µ0,σ,κ,α,C0,λ, where the dimensions of each variable νi are

[νi ] = kgB1i mB2i sB3i , (B.21)

and where B is

R U ρ µ0 p σ κ α C0 λ

kg 0 0 1 1 1 1 0 ↑1 1 0
m 1 1 ↑3 ↑1 ↑1 0 ↑1 5 ↑3 0
s 0 ↑1 0 ↑1 ↑2 ↑2 0 ↑2 0 1

(B.22)

This yields the following dimensionless groups: the dynamic pressure p := p/U 2ρ, the
Reynolds number Re := RUρ/µ0, the Weber number We := RU 2ρ/σ, the dimensionless
chemical concentration C 0 := C0/ρ, the dimensionless friction relaxation time λ :=
λU /R, the dimensionless activity parameter Ac :=αC 2

0 /ρU 2, and the dimensionless
curvature κ := Rκ.
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Simulation Parameters

Unless otherwise specified, the following values are to be taken:

Parameter Value
Da1 4.5
Da2 7.38
Da3 1
Da4 1
Pe2 Pe1/8
Viscoplastic regularisation parameter m 1000
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Appendix D

Parameter Sweeps

D.1 Periodic Boundaries

D.1.1 Pe1—Ac, Newtonian rheology
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Figure D.1: Depicted: C1 at the final timestep. For simulation parameters refer to row 18 of
appendix C.
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D.1.2 Bi—Ac
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Figure D.2: Depicted: C1 at the final timestep. For simulation parameters refer to row 19 of
appendix C.
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D.2 Droplet

D.2.1 Pe1—Ac, Ac > 0, We =→
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Figure D.3: Depicted: C1 at the final timestep. For simulation parameters refer to row 8 of
appendix C.
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D.2.2 Pe1—Ac, Ac > 0, We = 1
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Figure D.4: Depicted: C1 at the final timestep. For simulation parameters refer to row 8 of
appendix C.
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D.2.3 Pe1—Ac, Ac > 0, We = 0.1
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Figure D.5: Depicted: C1 at the final timestep. For simulation parameters refer to row 8 of
appendix C.
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D.2.4 We—Ac, Ac > 0
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Figure D.6: Depicted: C1 at the final timestep. For simulation parameters refer to row 9 of
appendix C.
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D.2.5 We—Ac, Ac < 0
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Figure D.7: Depicted: C1 at the final timestep. For simulation parameters refer to row 9 of
appendix C.



Appendix E

Extra Figures

E.1 Validation of Data Transfer Integrity

0

0

¡(x,0) scalar[]

Analytical

Sampled

Basilisk

0

@x¡(x,0) vector[]

Julia

0

@x¡(x,0) face vector[]

Julia

Figure E.1: (left) The cross-section of a 2D bump signal (black solid line), the signal sampled on
the grid of Basilisk (red plus), the signal sampled on the same grid in Julia (blue cross). (middle)
The gradient of the bump signal is calculated analytically (black solid line), by a second order
accurate finite difference formulation using Basilisk (red plus), by a similar formulation using
Julia (green dot), and the analytical solution sampled on the discrete grid used by Basilisk (blue
cross). (right) Similarly, but using a face centered stencil.
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E.2 The Classical Brusselator
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Figure E.2: The solution to the concenentration of the first morphogen for varying values of ς.
From left to right, the solution takes the form of hexagons, stripes, and hexagons again. The
critical parameter ς will henceforth be fixed at ς= 0.1 unless otherwise stated. For simulation
parameters refer to row 1 of appendix C.
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Figure E.3: The absolute difference between C̃1 and 1↑C̃2 is shown for different values of ς.
The tilde signifies that the field has been normalized. The value quantifies the error of the
claim that C2 is equal to C1 up to normalization, which is around 10%.

E.3 Temporal Snapshots

E.3.1 Periodic Boundary Conditions
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Figure E.4: For simulation parameters refer to row 21 of appendix C.
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Figure E.5: For simulation parameters refer to row 22 of appendix C.
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Figure E.6: For simulation parameters refer to row 23 of appendix C.

E.3.2 Motile Droplet

Velocity
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Figure E.7: The velocity field (with its mean subtracted per dimension) is depicted for one full
pulsation cycle. For simulation parameters refer to row 12 of appendix C.



Appendix F

Basilisk C

A Basilisk program consists of an entry point, as is the case in C, declarations of
variables and fields, and events. Variables are allocated memory automatically, so
that the user only has to specify the type, name and value. An event consists of a
trigger condition and a body, the former may depend on the iteration number or the
simulation time.

In Basilisk, one may make use of a multitude of generic so called solvers. These are
routines that solve a more general instance of the problem at hand. Examples include
solvers that solve the Navier-Stokes equations, reaction-diffusion equations, and many
others. Such a solver is used by including the appropriate header file and assigning
values to variables defined in the solver.

We give a brief sketch of the anatomy of a Basilisk program, and detail a minimal
subset of features necessary to implement the simulations that will follow.

#include "solver.h"

int main(int argc, char * argv[]) {
init_grid(1 << 7); // 2^7

// load parameters from argv
}

event init(i = 0) {
// declare boundary conditions
// set initial value to fields

}

event integration(i++) {
// perform a calculation at each iteration

}

event final(t = end) {
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// save value of fields to disk
}

Basilisk supports three kinds of stencils for fields: centered stencils, where the field
value is defined equidistant between four vertices (in two dimensions), face centered
fields, where the value is defined equidistant between two vertices, and vertex centered
fields, where the value is defined on a vertex.

Corresponding iterators are defined for all of these stencil types. Some iterators
automatically cycle through permutations of x and y in specific cases. The conditions
required for this to occur are: the code must be in the scope of a foreach_dimension
loop, or a foreach_face loop, and the variable name must end with _x or _y. Each
iterator exposes the coordinates x and y of the cell currently iterated upon.

scalar a[];
foreach() {

a[] = ...;
}

vector u[];
foreach() {

foreach_dimension() {
u.x[] = function_defined_elsewhere_x(x, y);
// automatically: u.y[] = function_defined_elsewhere_y(x, y);

}
}

face vector uf[];
foreach_face() {

uf.x[] = function_defined_elsewhere_x(x, y);
// automatically: uf.y[] = function_defined_elsewhere_y(x, y);

}

The Basilisk preprocessor performs dimensional analysis on the variables declared in
the program. This is done to enforce correctness and can be disabled, however, doing
so is highly discouraged. Dimensions are assigned by providing an array of exponents
of some set of base dimensions, which the user is free to choose so long as this is done
in a consistent fashion. Here we will use SI units.

// [m, s]
double distance = 0 [1, 0];
double duration = 0 [0, 1];
double acceleration = 0 [1, -2];

Events derive inspiration for their syntax from for loops in C. They consist of a name,
a starting condition, a condition that must be true for the event to repeat, and an
iteration operator. These conditions may depend only on the simulation time t and
the iteration number i. An event returns the value zero by default. Should it be
necessary, it is possible to halt the simulation by returning a value different from zero.

event name(t = 1; t <= 5; t += 1) {
// every time step past t=1 and until t=5 inclusive
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}

event name(t = 8) // once at t=8
event name(i++) // at every iteration
event name(t = 1; t *= 2) // at t = 1, 2, 4, 8, ...
event name(t = {2.5, 4, 9.1}) // at t = 2.5, 4, 9.1
event name(t = end) // once when the simulation is complete

Three types of boundary conditions have utility functions defined to declare them:
neumann, dirichlet and periodic. One can refer to the boundary in question by
the reserved keywords left, right, top, and bottom. We will only consider features
related to two dimensional simulations; the reader may consult the Basilisk documen-
tation for information that is omitted. It is possible to automatically select the tangent
and normal directions of a vector field using, respectively, the notation u.t and u.n.

a[left] = dirichlet(val);
a[right] = neumann(val);

u.n[top] = dirichlet(0); // selects vertical component
u.n[left] = dirichlet(0); // selects horizontal component
u.t[top] = dirichlet(0); // selects horizontal component

periodic(left); // same as periodic(right), applies to all fields
periodic(top); // same as periodic(bottom)

We refer the reader to the Basilisk documentation for more information.
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